Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: Confinement force relationship

Wei Ning Wang, Yi Jiang, Pratim Biswas

Research output: Journal article publicationJournal articleAcademic researchpeer-review

105 Citations (Scopus)


A possible solution to solve the restacking issue of graphene oxide (GO) nanosheets during large-scale production is to turn the two-dimensional (2D) nanosheets into three-dimensional (3D) crumpled balls that have excellent compressive properties but still maintain high free volumes. An aerosol-based process has been proven to be a rational method for this purpose, in which, the crumpling phenomenon, however, has hitherto remained unclear. Here we present a detailed understanding of the crumpling of GO nanosheets by a systematic investigation conducted in aerosolized droplets by means of in-line (e.g., scanning mobility particle sizer) and off-line (e.g., electron microscopy) measurements. Correlations between the confinement force and various parameters, such as evaporation rate and precursor concentration were established to derive a universally applicable equation. Both calculation and experimental results revealed that the evaporation rate plays an important role in controlling the crumpling process.

Original languageEnglish
Pages (from-to)3228-3233
Number of pages6
JournalJournal of Physical Chemistry Letters
Issue number21
Publication statusPublished - 1 Nov 2012
Externally publishedYes

ASJC Scopus subject areas

  • General Materials Science
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: Confinement force relationship'. Together they form a unique fingerprint.

Cite this