Evaluation of welding damage in welded tubular steel structures using guided waves and a probability-based imaging approach

Xi Lu, Mingyu Lu, Li Min Zhou, Zhongqing Su, Li Cheng, Lin Ye, Guang Meng

Research output: Journal article publicationJournal articleAcademic researchpeer-review

25 Citations (Scopus)


Welded tubular steel structures (WTSSs) are widely used in various engineering sectors, serving as major frameworks for many mechanical systems. There has been increasing awareness of introducing effective damage identification and up-to-the-minute health surveillance to WTSSs, so as to enhance structural reliability and integrity. In this study, propagation of guided waves (GWs) in a WTSS of rectangular cross-section, a true-scale model of a train bogie frame segment, was investigated using the finite element method (FEM) and experimental analysis with the purpose of evaluating welding damage in the WTSS. An active piezoelectric sensor network was designed and surface-bonded on the WTSS, to activate and collect GWs. Characteristics of GWs at different excitation frequencies were explored. A signal feature, termed 'time of maximal difference' (ToMD) in this study, was extracted from captured GW signals, based on which a concept, damage presence probability (DPP), was established. With ToMD and DPP, a probability-based damage imaging approach was developed. To enhance robustness of the approach to measurement noise and uncertainties, a two-level image fusion scheme was further proposed. As validation, the approach was employed to predict presence and location of slot-like damage in the welding zone of a WTSS. Identification results have demonstrated the effectiveness of the developed approach for identifying damage in WTSSs and its large potential for real-time health monitoring of WTSSs.
Original languageEnglish
Article number015018
JournalSmart Materials and Structures
Issue number1
Publication statusPublished - 1 Jan 2011

ASJC Scopus subject areas

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering

Cite this