Evaluation of pedestrian wind comfort near ‘lift-up’ buildings with different aspect ratios and central core modifications

Xuelin Zhang, K. T. Tse, A. U. Weerasuriya, S. W. Li, K. C.S. Kwok, Cheuk Ming Mak, Jianlei Niu, Zhang Lin

Research output: Journal article publicationJournal articleAcademic researchpeer-review

72 Citations (Scopus)

Abstract

Despite this advantage, the lift-up design has been sparsely adopted for buildings in urban areas partly because of the lack of understanding of the combined effects of building dimensions and lift-up design on the surrounding pedestrian level wind (PLW) field. Therefore, this study aims to investigate the influence of lift-up buildings with different aspect ratios (height/width) on the surrounding PLW field and pedestrian wind comfort level. Five lift-up buildings with aspect ratios 4:1 to 0.5:1 were tested in a boundary layer wind tunnel and results were compared with those of five buildings with similar dimensions but without lift-up design. The results reveal a strong dependence of the maximum wind speed in lift-up areas with building height, which results subsequently a small area of acceptable wind conditions near tall and slender lift-up buildings. Lift-up designs adopted for short and wide buildings produce larger areas of pedestrian wind comfort. The central cores modified with corner modifications are effective in increasing the pedestrian wind comfort in the lift-up area of tall and slender buildings.
Original languageEnglish
Pages (from-to)245-257
Number of pages13
JournalBuilding and Environment
Volume124
DOIs
Publication statusPublished - 1 Nov 2017

Keywords

  • Building dimension
  • Corner modification
  • Lift-up building
  • Pedestrian wind comfort
  • Wind tunnel test

ASJC Scopus subject areas

  • Environmental Engineering
  • Civil and Structural Engineering
  • Geography, Planning and Development
  • Building and Construction

Fingerprint

Dive into the research topics of 'Evaluation of pedestrian wind comfort near ‘lift-up’ buildings with different aspect ratios and central core modifications'. Together they form a unique fingerprint.

Cite this