Evaluation of four models for predicting thermal sensation in Chinese residential kitchen

Xiaojie Zhou, Sumei Liu, Xuan Liu, Xiaorui Lin, Ke Qing, Weizhen Zhang, Jian Li, Jiankai Dong, Dayi Lai, Qingyan Chen

Research output: Journal article publicationConference articleAcademic researchpeer-review

8 Citations (Scopus)

Abstract

Thermal environment in residential kitchen in China is transient and non-uniform and with strong radiation asymmetry from gas stove. Due to the complexity of kitchen thermal environment, it is not sure if previous thermal comfort models can accurately predict the thermal comfort in residential kitchens. In order to evaluate if existing thermal comfort models can be applied for Chinese kitchens, this investigation conducted human subject tests for 20 cooks when preparing dishes in a kitchen. The study measured skin temperatures of the cooks and environmental parameters and used questionnaires to obtain their thermal sensation votes at the same time. The actual thermal sensation votes were compared with the predicted ones by four thermal comfort models: predicted mean vote (PMV) model, dynamic thermal sensation (DTS) model, the University of California at Berkeley (UCB) model, and the transient outdoor thermal comfort model from Lai et al. The results showed that all the models could predict the trend of the thermal sensations but with errors. The PMV model overpredicted the thermal sensations. The UCB and Lai's models showed a slower change in thermal sensation votes (TSV) after turning on the stove. The DTS model was more accurate than the others in predicting the mean thermal sensation, but with a large variation in predicting individual thermal sensation votes. A better thermal comfort model should be developed for Chinese residential kitchens.

Original languageEnglish
Article number02004
JournalE3S Web of Conferences
Volume111
DOIs
Publication statusPublished - 13 Aug 2019
Event13th REHVA World Congress, CLIMA 2019 - Bucharest, Romania
Duration: 26 May 201929 May 2019

ASJC Scopus subject areas

  • General Environmental Science
  • General Energy
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'Evaluation of four models for predicting thermal sensation in Chinese residential kitchen'. Together they form a unique fingerprint.

Cite this