TY - JOUR
T1 - Evaluation and manipulation of the key emulsification factors toward highly stable PCM-water nano-emulsions for thermal energy storage
AU - Zhang, Xiyao
AU - Niu, Jianlei
AU - Wu, Jian yong
N1 - Funding Information:
This work was supported financially by the Research Grant Council of the Hong Kong SAR Government through General Research Fund ( PolyU 152707/16E), by the Environment and Conservation Fund (ECF Project 53/2018 ), and by the Hong Kong Polytechnic University .
Publisher Copyright:
© 2020 Elsevier B.V.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/1
Y1 - 2021/1
N2 - PCM emulsions represent a common type of fluid media for thermal energy storage (TES) systems. However, a major challenge for their application is to maintain a stable homogeneous fluid. Reduction of the droplet size is one of the most effective approaches for improving stability, such as the preparation of nano-emulsions. This work aims to develop stable PCM-water nano-emulsions prepared with n-hexadecane by manipulating the key emulsification factors, particularly the emulsifier combinations and process conditions. Two low-energy emulsification methods, phase inversion temperature (PIT) and emulsion inversion point (EIP), were applied to prepare the nano-emulsions, using Brij L4 as the emulsifier. Several important properties of the emulsions were evaluated including droplet size distribution, conductivity, and rheological characteristics and the stability of emulsions over extended periods and multiple freeze-thaw cycles. Moreover, the thermal performance for their potential application in TES systems were examined. Eventually, nano-emulsions with small and uniform droplets were obtained by both PIT and EIP methods with suitable emulsifier concentrations. The smallest droplet size (~60 nm) was attained with 11% emulsifier and 30% PCM by the PIT method, and the most stable emulsion attained with 15% of emulsifier and 30% of PCM. The PCM nano-emulsions behaved as a Newtonian liquid with a good fluidity and a superior stability over long-time storage and freezing-cycles. The degree of supercooling was reduced with the addtion of nano SiO2 as a nucleating agent. The findings from the study are useful for better understanding of the controlling factors and further development of stable and effective nano-emulsions.
AB - PCM emulsions represent a common type of fluid media for thermal energy storage (TES) systems. However, a major challenge for their application is to maintain a stable homogeneous fluid. Reduction of the droplet size is one of the most effective approaches for improving stability, such as the preparation of nano-emulsions. This work aims to develop stable PCM-water nano-emulsions prepared with n-hexadecane by manipulating the key emulsification factors, particularly the emulsifier combinations and process conditions. Two low-energy emulsification methods, phase inversion temperature (PIT) and emulsion inversion point (EIP), were applied to prepare the nano-emulsions, using Brij L4 as the emulsifier. Several important properties of the emulsions were evaluated including droplet size distribution, conductivity, and rheological characteristics and the stability of emulsions over extended periods and multiple freeze-thaw cycles. Moreover, the thermal performance for their potential application in TES systems were examined. Eventually, nano-emulsions with small and uniform droplets were obtained by both PIT and EIP methods with suitable emulsifier concentrations. The smallest droplet size (~60 nm) was attained with 11% emulsifier and 30% PCM by the PIT method, and the most stable emulsion attained with 15% of emulsifier and 30% of PCM. The PCM nano-emulsions behaved as a Newtonian liquid with a good fluidity and a superior stability over long-time storage and freezing-cycles. The degree of supercooling was reduced with the addtion of nano SiO2 as a nucleating agent. The findings from the study are useful for better understanding of the controlling factors and further development of stable and effective nano-emulsions.
KW - n-Hexadecane
KW - Nano-emulsion
KW - Phase change material
KW - SiO nucleating agent
KW - Stability
KW - Supercooling
UR - http://www.scopus.com/inward/record.url?scp=85092066866&partnerID=8YFLogxK
U2 - 10.1016/j.solmat.2020.110820
DO - 10.1016/j.solmat.2020.110820
M3 - Journal article
AN - SCOPUS:85092066866
SN - 0927-0248
VL - 219
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
M1 - 110820
ER -