Estimation of Hydraulic Properties in Permeable Pavement Subjected to Clogging Simulation

Guoyang Lu, Zijian He, Pengfei Liu, Zhihao He, Gaoyang Li, Hao Jiang, Markus Oeser

Research output: Journal article publicationJournal articleAcademic researchpeer-review

2 Citations (Scopus)


Permeable pavements are often affected by pore clogging, which leads to their functional failure and reduced service life. However, the clogging mechanism and its impact on the permeability and complex pore microstructures in pervious pavement remain unclear. The aim of current study is to quantify the clogging behavior in pervious pavement materials and carry out investigations on the development of pore characteristics and permeability. Novel polyurethane-bound pervious mixture (PUPM) was adopted for comparative study in present research with conventional Porous Asphalt (PA). The Aachen Polishing Machine (APM) was selected to perfectly serve as a simulator for clogging process of pavement in the actual service condition. The permeability and pore microstructure of the pervious pavement material were then characterized by using the self-developed permeameter and X-ray Computed Tomography (CT) scanning, respectively. The development of pore characteristics in terms of clogging was experimentally illustrated. Based on the pore characteristics, the flow behavior of PUPM subjected to different clogging periods was predicted based on the developed non-Darcy flow model. The developed experiments and analysis can further strengthen the understanding of the clogging mechanism within the porous pavement material. The results can also serve for the optimization of the pervious pavement design in the engineering application.

Original languageEnglish
Article number5091895
JournalAdvances in Civil Engineering
Publication statusPublished - Jan 2022

ASJC Scopus subject areas

  • Civil and Structural Engineering


Dive into the research topics of 'Estimation of Hydraulic Properties in Permeable Pavement Subjected to Clogging Simulation'. Together they form a unique fingerprint.

Cite this