TY - JOUR
T1 - Estimating biological age from retinal imaging: a scoping review
AU - Grimbly, Michaela Joan
AU - Koopowitz, Sheri Michelle
AU - Chen, Ruiye
AU - Sun, Zihan
AU - Foster, Paul J.
AU - He, Mingguang
AU - Stein, Dan J.
AU - Ipser, Jonathan
AU - Zhu, Zhuoting
N1 - Publisher Copyright:
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
PY - 2024/8/24
Y1 - 2024/8/24
N2 - BACKGROUND/AIMS: The emerging concept of retinal age, a biomarker derived from retinal images, holds promise in estimating biological age. The retinal age gap (RAG) represents the difference between retinal age and chronological age, which serves as an indicator of deviations from normal ageing. This scoping review aims to collate studies on retinal age to determine its potential clinical utility and to identify knowledge gaps for future research. METHODS: Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist, eligible non-review, human studies were identified, selected and appraised. PubMed, Scopus, SciELO, PsycINFO, Google Scholar, Cochrane, CINAHL, Africa Wide EBSCO, MedRxiv and BioRxiv databases were searched to identify literature pertaining to retinal age, the RAG and their associations. No restrictions were imposed on publication date. RESULTS: Thirteen articles published between 2022 and 2023 were analysed, revealing four models capable of determining biological age from retinal images. Three models, 'Retinal Age', 'EyeAge' and a 'convolutional network-based model', achieved comparable mean absolute errors: 3.55, 3.30 and 3.97, respectively. A fourth model, 'RetiAGE', predicting the probability of being older than 65 years, also demonstrated strong predictive ability with respect to clinical outcomes. In the models identified, a higher predicted RAG demonstrated an association with negative occurrences, notably mortality and cardiovascular health outcomes. CONCLUSION: This review highlights the potential clinical application of retinal age and RAG, emphasising the need for further research to establish their generalisability for clinical use, particularly in neuropsychiatry. The identified models showcase promising accuracy in estimating biological age, suggesting its viability for evaluating health status.
AB - BACKGROUND/AIMS: The emerging concept of retinal age, a biomarker derived from retinal images, holds promise in estimating biological age. The retinal age gap (RAG) represents the difference between retinal age and chronological age, which serves as an indicator of deviations from normal ageing. This scoping review aims to collate studies on retinal age to determine its potential clinical utility and to identify knowledge gaps for future research. METHODS: Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist, eligible non-review, human studies were identified, selected and appraised. PubMed, Scopus, SciELO, PsycINFO, Google Scholar, Cochrane, CINAHL, Africa Wide EBSCO, MedRxiv and BioRxiv databases were searched to identify literature pertaining to retinal age, the RAG and their associations. No restrictions were imposed on publication date. RESULTS: Thirteen articles published between 2022 and 2023 were analysed, revealing four models capable of determining biological age from retinal images. Three models, 'Retinal Age', 'EyeAge' and a 'convolutional network-based model', achieved comparable mean absolute errors: 3.55, 3.30 and 3.97, respectively. A fourth model, 'RetiAGE', predicting the probability of being older than 65 years, also demonstrated strong predictive ability with respect to clinical outcomes. In the models identified, a higher predicted RAG demonstrated an association with negative occurrences, notably mortality and cardiovascular health outcomes. CONCLUSION: This review highlights the potential clinical application of retinal age and RAG, emphasising the need for further research to establish their generalisability for clinical use, particularly in neuropsychiatry. The identified models showcase promising accuracy in estimating biological age, suggesting its viability for evaluating health status.
KW - eye (globe)
KW - imaging
KW - public health
KW - retina
UR - http://www.scopus.com/inward/record.url?scp=85202266945&partnerID=8YFLogxK
U2 - 10.1136/bmjophth-2024-001794
DO - 10.1136/bmjophth-2024-001794
M3 - Review article
C2 - 39181547
AN - SCOPUS:85202266945
SN - 2397-3269
VL - 9
SP - 1
EP - 6
JO - BMJ Open Ophthalmology
JF - BMJ Open Ophthalmology
IS - 1
M1 - e001794
ER -