Abstract
� 2016 Chinese Physical Society and IOP Publishing Ltd. An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from 1 kHz to 1 MHz. The proposed model is based on the Fermi-Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal. The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data. Simulations indicate that the capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface, with negligible effects from the traps far from the interface, and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed. In addition, by excluding the negligible effect of oxide-trap conductance, the model avoids the use of imaginary numbers and complex calculations, and thus is simple and intuitive.
Original language | English |
---|---|
Article number | 118502 |
Journal | Chinese Physics B |
Volume | 25 |
Issue number | 11 |
DOIs | |
Publication status | Published - 1 Nov 2016 |
Keywords
- C-V curve
- frequency dispersion
- MOS capacitor
- oxide-trap capacitance
ASJC Scopus subject areas
- General Physics and Astronomy