Abstract
Triboelectric nanogenerator (TENG), a promising energy harvesting technique, has attracted intense research interests in recent years for its applicability in portable and wearable electronics. Self-powered sensors with high sensitivity based on TENG have been widely reported. However, for practical applications, the survivability of TENG in harsh working environments is a vital issue which must be addressed. Herein, we report a hydrophobic, icephobic, and ultrafast self-healing TENG with outstanding non-drying and non-freezing properties for energy harvesting and self-powered sensor. Due to the excellent environment resistance and conductive capability of organohydrogel, the TENG shows much better electrical output stability in a wide temperature range than conventional hydrogel-based TENG which suffers from being frozen at low temperature and dried at high temperature. Moreover, the ultrafast self-healing function enables the electrical output performance of the TENG rapidly restore without delay. The TENG in this work demonstrates an open-circuit voltage of 157 V, a short-circuit current of 16 µA, and a short-circuit charge of 29 nC. The maximum output power density reaches up to 710 mW m−2. This research might pave a new road for novel applications of TENG in harsh environments with reliable output performance and self-healing capability for practical applications.
Original language | English |
---|---|
Article number | 105724 |
Journal | Nano Energy |
Volume | 82 |
DOIs | |
Publication status | Published - Apr 2021 |
Keywords
- Environment-resisted
- Non-drying
- Organohydrogel
- Self-healing
- Triboelectric nanogenerators
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- General Materials Science
- Electrical and Electronic Engineering