TY - JOUR
T1 - Entropy-based discrimination between translated Chinese and original Chinese using data mining techniques
AU - Liu, Kanglong
AU - Ye, Rongguang
AU - Zhongzhu, Liu
AU - Ye, Rongye
N1 - Publisher Copyright:
© 2022 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/3/24
Y1 - 2022/3/24
N2 - The present research reports on the use of data mining techniques for differentiating between translated and non-translated original Chinese based on monolingual comparable corpora. We operationalized seven entropy-based metrics including character, wordform unigram, wordform bigram and wordform trigram, POS (Part-of-speech) unigram, POS bigram and POS trigram entropy from two balanced Chinese comparable corpora (translated vs non-translated) for data mining and analysis. We then applied four data mining techniques including Support Vector Machines (SVMs), Linear discriminant analysis (LDA), Random Forest (RF) and Multilayer Perceptron (MLP) to distinguish translated Chinese from original Chinese based on these seven features. Our results show that SVMs is the most robust and effective classifier, yielding an AUC of 90.5% and an accuracy rate of 84.3%. Our results have affirmed the hypothesis that translational language is categorically different from original language. Our research demonstrates that combining information-theoretic indicator of Shannon's entropy together with machine learning techniques can provide a novel approach for studying translation as a unique communicative activity. This study has yielded new insights for corpus-based studies on the translationese phenomenon in the field of translation studies.
AB - The present research reports on the use of data mining techniques for differentiating between translated and non-translated original Chinese based on monolingual comparable corpora. We operationalized seven entropy-based metrics including character, wordform unigram, wordform bigram and wordform trigram, POS (Part-of-speech) unigram, POS bigram and POS trigram entropy from two balanced Chinese comparable corpora (translated vs non-translated) for data mining and analysis. We then applied four data mining techniques including Support Vector Machines (SVMs), Linear discriminant analysis (LDA), Random Forest (RF) and Multilayer Perceptron (MLP) to distinguish translated Chinese from original Chinese based on these seven features. Our results show that SVMs is the most robust and effective classifier, yielding an AUC of 90.5% and an accuracy rate of 84.3%. Our results have affirmed the hypothesis that translational language is categorically different from original language. Our research demonstrates that combining information-theoretic indicator of Shannon's entropy together with machine learning techniques can provide a novel approach for studying translation as a unique communicative activity. This study has yielded new insights for corpus-based studies on the translationese phenomenon in the field of translation studies.
UR - http://www.scopus.com/inward/record.url?scp=85126996894&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0265633
DO - 10.1371/journal.pone.0265633
M3 - Journal article
C2 - 35324927
AN - SCOPUS:85126996894
SN - 1932-6203
VL - 17
JO - PLoS ONE
JF - PLoS ONE
IS - 3
M1 - e0265633
ER -