Abstract
The curse of dimensionality severely restricts the predictive power of multi-label classification systems. High-dimensional feature vectors may contain redundant or irrelevant information, causing the classification systems suffer from overfitting. To address this problem, this paper proposes a dimensionality-reduction method that applies random projection (RP) to construct an ensemble of multilabel classifiers. The merits of the proposed method are demonstrated through a multi-label protein classification task. Specifically, high-dimensional feature vectors are extracted from protein sequences using the gene ontology (GO) and Swiss-Prot databases. The feature vectors are then projected onto lower-dimensional spaces by random projection matrices whose elements conform to a distribution with zero mean and unit variance. The transformed low-dimensional vectors are classified by an ensemble of one-vs-rest multi-label support vector machine (SVM) classifiers, each corresponding to one of the RP matrices. The scores obtained from the ensemble are then fused for predicting the subcellular localization of proteins. Experimental results suggest that the proposed method can reduce the dimensions by seven folds and impressively improve the classification performance.
Original language | English |
---|---|
Title of host publication | 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 |
Publisher | IEEE |
Pages | 5999-6003 |
Number of pages | 5 |
ISBN (Print) | 9781479928927 |
DOIs | |
Publication status | Published - 1 Jan 2014 |
Event | 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italy Duration: 4 May 2014 → 9 May 2014 |
Conference
Conference | 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 |
---|---|
Country/Territory | Italy |
City | Florence |
Period | 4/05/14 → 9/05/14 |
Keywords
- Dimension reduction
- Multi-label classification
- Protein subcellular localization
- Random projection
- Support vector machines
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering