Abstract
The deformation behavior in Zr36Cu64 metallic glasses with pre-introduced indent-notches has been studied by molecular dynamics simulation at the atomic scale. The indent-notches can trigger the formation of densely-packed clusters composed of solid-like atoms in the indent-notch affected zone. These densely-packed clusters are highly resistant to the nucleation of shear bands. Hence, there is more tendency for the shear bands to nucleate outside the indent-notch affected zone, which enlarges the deformation region and enhances both the strengthening effect and the plastic deformation ability. For indent-notched MGs, when determining the initial yielding level, there is a competition process occurring between the densely-packed clusters leading to the shear band formation outside the indent-notch affected zone and the stress-concentration localizing deformation around the notch roots. When the indent-notch depth is small, the stress-concentration around the notch root plays a dominant role, leading to the shear bands initiating from the notch root, reminiscence of the cut-notches. As the indent-notch depth increases, there are many densely-packed clusters with high resistance to deformation in the indent-notch affected zone, leading to the shear band formation from the interface between the indent-notch affected zone and the matrix. Current research findings provide a feasible means for improving the strength and the plasticity of metallic glasses at room temperature.
Original language | English |
---|---|
Pages (from-to) | 119-125 |
Number of pages | 7 |
Journal | Journal of Materials Science and Technology |
Volume | 43 |
DOIs | |
Publication status | Published - 15 Apr 2020 |
Keywords
- Metallic glass
- Microstructure
- Molecular dynamics simulation
- Notch
- Shear band
ASJC Scopus subject areas
- Ceramics and Composites
- Mechanics of Materials
- Mechanical Engineering
- Polymers and Plastics
- Metals and Alloys
- Materials Chemistry