Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks

Xu Xu, Jiayong Li, Zhao Xu, Jian Zhao, Chun Sing Lai

Research output: Journal article publicationJournal articleAcademic researchpeer-review

17 Citations (Scopus)

Abstract

To improve photovoltaic hosting capacity of distribution networks, this paper proposes a novel optimal static var compensator planning model which is formulated as a two-stage stochastic programming problem. Specifically, the first stage of our model determines the static var compensator planning decisions and the corresponding photovoltaic hosting capacity. In the second stage, the feasibility of the first stage results is evaluated under different uncertainty scenarios of load demand and photovoltaic output to ensure no constraint violations, especially no voltage constraint violations. In addition, we simultaneously consider the minimization of static var compensator planning cost and the maximization of photovoltaic hosting capacity by formulating a multi-objective function. To improve the computational efficiency, a solution method based on Benders decomposition is developed by decomposing the two-stage problem into a master problem and multiple subproblems. The effectiveness of the proposed model and solution method is validated on modified IEEE 37-node and 123-node distribution systems. Last, our results show that the proposed model can significantly improve the photovoltaic hosting capacity. The case studies also demonstrate that the PV hosting capacity becomes insensitive to the additional SVC planning cost when the total cost exceeds about $175,000.

Original languageEnglish
Pages (from-to)952-962
Number of pages11
JournalApplied Energy
Volume238
DOIs
Publication statusPublished - 15 Mar 2019

Keywords

  • Benders decomposition
  • Photovoltaic hosting capacity
  • Static var compensator planning model
  • Two-stage stochastic programming
  • Uncertainty scenarios

ASJC Scopus subject areas

  • Building and Construction
  • Energy(all)
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law

Cite this