Enhancing Guided-Wave-Based Structural Health Monitoring Using Metamaterial Devices Designed by Topology Optimization

Ze Liu, Shengbo Shan, Li Cheng

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Lamb waves inside thin-walled structures have received extensive attention due to their great promise in applications such as structural health monitoring (SHM). Applications point at the common need for effective conditioning and manipulation of the wave propagation in terms of both frequency content and mode components. In this work, the concept of metamaterials is exploited to construct functional meta-devices (MDs). The MDs are designed to deliver prescribed functionalities after they are surface-mounted onto a structure conveying Lamb waves. To this end, a unified inverse-design scheme based on topology optimization is proposed and applied to achieve multifold functions such as frequency filtering and single-mode transmission. Typical scenarios with different frequencies and modes are discussed. Functional MDs with broadband working frequencies are obtained by using the established design strategy. A representative MD with a finite number of unit cells is examined through finite element simulations. Numerical simulations show that, through wave modulation of the designed MD, Lamb waves located in pass bands can transmit through the MD, while the waves within bandgaps are prohibited to propagate by the MD, which agrees well with the predicted dispersion features. An experiment is finally carried out to confirm the prescribed wave manipulation functions of the designed MD from the SHM perspective, which is finally validated experimentally using a metal specimen containing local plasticized incipient damage. This work provides a universal approach for topologically customizing MDs for the precise and tactical control of Lamb wave propagation, especially for SHM applications.

Original languageEnglish
Title of host publicationStructural Health Monitoring 2023
Subtitle of host publicationDesigning SHM for Sustainability, Maintainability, and Reliability - Proceedings of the 14th International Workshop on Structural Health Monitoring
EditorsSaman Farhangdoust, Alfredo Guemes, Fu-Kuo Chang
PublisherDEStech Publications
Pages584-591
Number of pages8
ISBN (Electronic)9781605956930
Publication statusPublished - Sept 2023
Event14th International Workshop on Structural Health Monitoring: Designing SHM for Sustainability, Maintainability, and Reliability, IWSHM 2023 - Stanford, United States
Duration: 12 Sept 202314 Sept 2023

Publication series

NameStructural Health Monitoring 2023: Designing SHM for Sustainability, Maintainability, and Reliability - Proceedings of the 14th International Workshop on Structural Health Monitoring

Conference

Conference14th International Workshop on Structural Health Monitoring: Designing SHM for Sustainability, Maintainability, and Reliability, IWSHM 2023
Country/TerritoryUnited States
CityStanford
Period12/09/2314/09/23

Keywords

  • SHM

ASJC Scopus subject areas

  • Computer Science Applications
  • Civil and Structural Engineering
  • Safety, Risk, Reliability and Quality
  • Building and Construction

Fingerprint

Dive into the research topics of 'Enhancing Guided-Wave-Based Structural Health Monitoring Using Metamaterial Devices Designed by Topology Optimization'. Together they form a unique fingerprint.

Cite this