TY - GEN
T1 - Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral Analysis
AU - Zhao, Rui
AU - Lam, Kin Man
AU - Lun, Daniel P.K.
PY - 2019/9/22
Y1 - 2019/9/22
N2 - Convolutional neural network (CNN)-based image denoising methods have been widely studied recently, because of their high-speed processing capability and good visual quality. However, most of the existing CNN-based denoisers learn the image prior from the spatial domain, and suffer from the problem of spatially variant noise, which limits their performance in real-world image denoising tasks. In this paper, we propose a discrete wavelet denoising CNN (WDnCNN), which restores images corrupted by various noise with a single model. Since most of the content or energy of natural images resides in the low-frequency spectrum, their transformed coefficients in the frequency domain are highly imbalanced. To address this issue, we present a band normalization module (BNM) to normalize the coefficients from different parts of the frequency spectrum. Moreover, we employ a band discriminative training (BDT) criterion to enhance the model regression. We evaluate the proposed WDnCNN, and compare it with other state-of-the-art denoisers. Experimental results show that WDnCNN achieves promising performance in both synthetic and real noise reduction, making it a potential solution to many practical image denoising applications.
AB - Convolutional neural network (CNN)-based image denoising methods have been widely studied recently, because of their high-speed processing capability and good visual quality. However, most of the existing CNN-based denoisers learn the image prior from the spatial domain, and suffer from the problem of spatially variant noise, which limits their performance in real-world image denoising tasks. In this paper, we propose a discrete wavelet denoising CNN (WDnCNN), which restores images corrupted by various noise with a single model. Since most of the content or energy of natural images resides in the low-frequency spectrum, their transformed coefficients in the frequency domain are highly imbalanced. To address this issue, we present a band normalization module (BNM) to normalize the coefficients from different parts of the frequency spectrum. Moreover, we employ a band discriminative training (BDT) criterion to enhance the model regression. We evaluate the proposed WDnCNN, and compare it with other state-of-the-art denoisers. Experimental results show that WDnCNN achieves promising performance in both synthetic and real noise reduction, making it a potential solution to many practical image denoising applications.
KW - convolutional neural networks
KW - discrete wavelet transform
KW - Image denoising
KW - spatial-spectral analysis
UR - http://www.scopus.com/inward/record.url?scp=85076819327&partnerID=8YFLogxK
U2 - 10.1109/ICIP.2019.8804295
DO - 10.1109/ICIP.2019.8804295
M3 - Conference article published in proceeding or book
AN - SCOPUS:85076819327
T3 - Proceedings - International Conference on Image Processing, ICIP
SP - 1124
EP - 1128
BT - 2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
PB - IEEE Computer Society
T2 - 26th IEEE International Conference on Image Processing, ICIP 2019
Y2 - 22 September 2019 through 25 September 2019
ER -