TY - JOUR
T1 - Enhanced nanoflow behaviors of polymer melts using dispersed nanoparticles and ultrasonic vibration
AU - Tian, Wei
AU - Yung, Kai Leung
AU - Xu, Yan
AU - Huang, Longbiao
AU - Kong, Jie
AU - Xie, Yunchuan
PY - 2011/10/1
Y1 - 2011/10/1
N2 - In the micro/nano fabrication of polymer nanostructures, a key factor is the favorable nanoflow behavior of polymer melts. Compared with the fluidic hydrodynamics of simple liquids through micro- or macrochannels, the nanoflow behavior of polymer melts, however, is affected much more by nanoscale effects and surface interactions. Therefore, achieving a favorable nanoflow of polymer melts in nanochannels is the key to fabricate high quality polymer nanoproducts. In this paper, the improved nanoflow behaviors of polystyrene melts in ordered porous alumina templates with the addition of nanoparticles and ultrasonic vibration were reported for the first time. Compared with bulk polystyrene (PS), the nanoflow rate of PS melts was enhanced when nanoparticles, such as surface-modified nano-silica (nano-SiO2) or β-cyclodextrin (β-CD), were added in a dispersed phase into a polystyrene matrix due to the decrease of the melts' viscosity caused by interactions between nanoparticles and PS segments. The enhancement action of β-CD was observed to be more significant than that of nano-SiO2based on the adsorption and the supramolecular self-assembly interactions between PS segments and β-CD. The enhanced nanoflow rate has shown to be more pronounced under ultrasonic vibration than those of the static condition and the low frequency vibration attributed to the synergetic effects of mechanical vibration and ultrasonic oscillation. The nanoflow rate of polymer melts increases with the gradual increase of vibration frequency. The optimal nanoflow behavior can be obtained by simultaneously adding β-CD as dispersed phase into PS matrix and applying ultrasonic vibration in one nanoflow system. These new findings will help the preparation of polymer-based functional nanocomposites, ultrasonic vibration-assisted nanofluidics, and micro/nano injection molding etc.
AB - In the micro/nano fabrication of polymer nanostructures, a key factor is the favorable nanoflow behavior of polymer melts. Compared with the fluidic hydrodynamics of simple liquids through micro- or macrochannels, the nanoflow behavior of polymer melts, however, is affected much more by nanoscale effects and surface interactions. Therefore, achieving a favorable nanoflow of polymer melts in nanochannels is the key to fabricate high quality polymer nanoproducts. In this paper, the improved nanoflow behaviors of polystyrene melts in ordered porous alumina templates with the addition of nanoparticles and ultrasonic vibration were reported for the first time. Compared with bulk polystyrene (PS), the nanoflow rate of PS melts was enhanced when nanoparticles, such as surface-modified nano-silica (nano-SiO2) or β-cyclodextrin (β-CD), were added in a dispersed phase into a polystyrene matrix due to the decrease of the melts' viscosity caused by interactions between nanoparticles and PS segments. The enhancement action of β-CD was observed to be more significant than that of nano-SiO2based on the adsorption and the supramolecular self-assembly interactions between PS segments and β-CD. The enhanced nanoflow rate has shown to be more pronounced under ultrasonic vibration than those of the static condition and the low frequency vibration attributed to the synergetic effects of mechanical vibration and ultrasonic oscillation. The nanoflow rate of polymer melts increases with the gradual increase of vibration frequency. The optimal nanoflow behavior can be obtained by simultaneously adding β-CD as dispersed phase into PS matrix and applying ultrasonic vibration in one nanoflow system. These new findings will help the preparation of polymer-based functional nanocomposites, ultrasonic vibration-assisted nanofluidics, and micro/nano injection molding etc.
UR - http://www.scopus.com/inward/record.url?scp=80053613597&partnerID=8YFLogxK
U2 - 10.1039/c1nr10545k
DO - 10.1039/c1nr10545k
M3 - Journal article
C2 - 21901225
SN - 2040-3364
VL - 3
SP - 4094
EP - 4100
JO - Nanoscale
JF - Nanoscale
IS - 10
ER -