Abstract
Mg-based materials are promising candidates for high capacity hydrogen storage. However, their poor hydrogenation/dehydrogenation kinetics and high desorption temperature are the main obstacles to their applications. This paper reports a method for in situ formation of cycle stable CeH2.73- MgH2-Ni nanocomposites, from the hydrogenation of as-melt Mg 80Ce18Ni2 alloy, with excellent hydrogen storage performance. The nanocomposites demonstrate reversible hydrogen storage capacity of more than 4.0 wt %, at a low desorption temperature with fast kinetics and long cycle life. The temperature for the full hydrogenation/ dehydrogenation cycle of the composites is significantly decreased to 505 K, which is about 100 K lower than that for pure Mg. The hydrogen desorption activation energy is 63 ± 3 kJ/mol H2 for the composites, which is significantly lower than those of Mg3Ce alloy and pure Mg (104 ± 7 and 158 ± 2 kJ/mol H2, respectively). X-ray diffraction and transmission electron microscopy have been used to reveal the mechanism that delivers this excellent cycle stability and fast hydriding/dehydriding kinetics. It is found that the hydriding/dehydriding process is catalyzed by the combination of in situ formed extremely fine CeH2/CeH2.73 and Ni to Mg/MgH2. In addition, this nanocomposite structure can effectively suppress Mg/MgH2 grain growth and enable the material to maintain its high performance for more than 500 hydrogenation dehydrogenation cycles.
Original language | English |
---|---|
Pages (from-to) | 7808-7820 |
Number of pages | 13 |
Journal | Journal of Physical Chemistry C |
Volume | 118 |
Issue number | 15 |
DOIs | |
Publication status | Published - 17 Apr 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films