Abstract
This paper reports the improvement of electrical, ferroelectric and endurance of Hf0.5Zr0.5O2 (HZO) thin-film capacitors by implementing W electrode. The W/HZO/W capacitor shows excellent pristine 2Pr values of 45.1 μC/cm2 at ±6 V, which are much higher than those of TiN/HZO/W (34.4 μC/cm2) and W/HZO/TiN (26.9 μC/cm2) capacitors. Notably, the maximum initial 2Pr value of W/HZO/W capacitor can reach as high as 57.9 μC/cm2 at ±7.5 V. These strong ferroelectric polarization effects are ascribed to the W electrode with a fairly low thermal expansion coefficient which provides a larger in-plane tensile strain compared with TiN electrode, allowing for enhancement of o-phase formation. Moreover, the W/HZO/W capacitor also exhibits higher endurance, smaller wake-up effect (10.1%) and superior fatigue properties up to 1.5 × 1010cycles compared to the TiN/HZO/W and W/HZO/TiN capacitors. Such improvements of W/HZO/W capacitor are mainly due to the decreased leakage current by more than an order of magnitude compared to the W/HZO/TiN capacitor. These results demonstrate that capping electrode material plays an important role in the enhancement of o-phase formation, reduces oxygen vacancies, mitigates wake-up effect and improves reliability.
Original language | English |
---|---|
Pages (from-to) | 1-7 |
Number of pages | 7 |
Journal | Journal of Materials Science and Technology |
Volume | 104 |
DOIs | |
Publication status | Published - 30 Mar 2022 |
Keywords
- Endurance properties
- Ferroelectric polarization
- HfZrO films
- Thermal expansion coefficient
- W electrode
ASJC Scopus subject areas
- Ceramics and Composites
- Mechanics of Materials
- Mechanical Engineering
- Polymers and Plastics
- Metals and Alloys
- Materials Chemistry