Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability

Bin Yu, Anthony Chun Yin Yuen, Xiaodong Xu, Zhen Cheng Zhang, Wei Yang, Hongdian Lu, Bin Fei, Guan Heng Yeoh, Pingan Song, Hao Wang

    Research output: Journal article publicationJournal articleAcademic researchpeer-review

    173 Citations (Scopus)


    High-performance MXene-based polymer nanocomposites are highly desirable for diverse industry applications due to their exceptional mechanical, thermal and other properties. Nevertheless, it remains an intractable challenge to create flame retardant polymer/MXene nanocomposites due to the difficulty to achieve uniform dispersion of MXenes. Here, we reported a facile strategy for the surface manipulation of two-dimensional titanium carbide nanosheets (Ti3C2Tx) with 3-aminopropylheptaisobutyl-polyhedral oligomeric silsesquioxane (AP-POSS) (POSS-Ti3C2Tx) through electrostatic interactions. The POSS-Ti3C2Tx is steadily dispersed in many polar solvents. Upon incorporated into polystyrene (PS), the combined effect of AP-POSS and MXene makes the resultant PS nanocomposites exhibit significantly improved thermal and thermoxidative stability, e.g. 22 °C and 39 °C increases in the temperature at 5 wt% mass loss under nitrogen and air, respectively. Meanwhile, a 39.1 % reduction in the peak heat release rate, a respective 54.4 % and 35.6 % reduction in the peak CO production rate and the peak CO2 production rate was achieved, which are superior to those of its own and previous counterparts. This outstanding fire safety is attributed to the combination of adsorption, catalytic and barrier effects of POSS-Ti3C2Tx. Hence, as-designed functionalized MXenes can be effectively applied in PS to formulate multifunctional polymer nanocomposites attractive for wide potential applications.

    Original languageEnglish
    Article number123342
    JournalJournal of Hazardous Materials
    Publication statusPublished - 5 Jan 2021


    • Fire safety
    • MXene
    • Polyhedral oligomeric silsesquioxane
    • Polystyrene
    • Surface manipulation
    • Thermal stability

    ASJC Scopus subject areas

    • Environmental Engineering
    • Environmental Chemistry
    • Waste Management and Disposal
    • Pollution
    • Health, Toxicology and Mutagenesis


    Dive into the research topics of 'Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability'. Together they form a unique fingerprint.

    Cite this