Energy and carbon footprint analysis of municipal wastewater treatment process integrated with food waste disposer

Jianyu Guan, Huichuan Zhuang, Chun Yin Lau, Ling Leng, Chi Shun Yeung, Arun Krishna Vuppaladadiyam, Huaimin Wang, Ho Yin Tse, Shao Yuan Leu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

7 Citations (Scopus)

Abstract

Household food waste (FW) management has become an emerging environmental issue affecting sustainable urban development. The application of in-sink domestic food waste disposers (FWDs) have brought significant public attentions due to its simplified waste handling process and reduced household expenses. However, the potentail negative impacts of mixing FW in the sewer system, i.e., the reduction of aeration efficiency in wastewater treatment processes (WWTPs) and corresponding increase of greenhouse gas (GHG) emission, has not been quantified. In this study, real-time oxygen transfer efficiency in processing water was measured in WWTPs receiving negligible amount of FW and compared with those receiving sewage combined with FWD effluent. WWTP receiving sewage with FW had 6–10% lower oxygen transfer rate than those without FW, resulting in extra energy consumptions of 0.25–0.30 kWh/m3 and GHG emissions of 0.35–0.41 kg CO2/m3. For estimating the substantial impacts of FWD to the carbon cycle, sludge treatment scenarios were designed among anaerobic digestion (AD), incineration, and direct landfill disposal. Compared with AD (−0.07 kWh/kg) and incineration (0.112 kWh/kg), FWD/WWTP consumed more energy (0.69–0.9 kWh/kg) and most of which (∼64%) was required by aeration. The operating costs of WWTPs also increased by 1.6–2.1 times in comparison with those did not receive FW. The application of FWD, however, could reduce the overall GHG emissions by 35.2% in comparison with direct landfilling. Decision-makers should guide householders and waste management practitioners through new policies such as carbon credits and/or waste charging scheme to support more environmental-friendly disposal methods of FW, especally when the maturity of socio-economic conditions are of concerns. Compared with AD and incineration, FWD may be a compromising alternative to control GHG emissions with existing wastewater treatment facilities especially to those regions where complete FW classification and treatment are not well-established.

Original languageEnglish
Article number134063
JournalJournal of Cleaner Production
Volume375
DOIs
Publication statusPublished - 15 Nov 2022

Keywords

  • Aeration efficiency
  • Food waste
  • Food waste disposer
  • Greenhouse gas emission
  • Sewage treatment system

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • General Environmental Science
  • Strategy and Management
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Energy and carbon footprint analysis of municipal wastewater treatment process integrated with food waste disposer'. Together they form a unique fingerprint.

Cite this