Abstract
The advent of the lab-on-fiber concept has boosted the prosperity of optical fiber-based platforms integrated with nanostructured metasurface technology which are capable of controlling the light at the nanoscale for multifunctional applications. Here, we propose an endless single-mode large-mode-area photonic crystal fiber (LMA-PCF) integrated metalens for broadband and efficient focusing from 800 to 1550 nm. In the present work, the optical properties of the substrate LMA-PCF were investigated, and the metalens, consisting of dielectric TiO2 nanorods with varying radii, was elaborately designed in the fiber core region with a diameter of 48 μm to cover the required phase profile for efficient focusing with a high transmission. The focusing characteristics of the designed metalens were also investigated in detail over a wide wavelength range. It is shown that the in-fiber metalens is capable of converging the incident beams into the bright, symmetric, and legible focal spots with a large focal length of 315-380 μm depending on the operating wavelength. A high and average focusing efficiency of 70% was also obtained with varying wavelengths. It is believed the proposed fiber metalens may show great potential in applications including fiber laser configuration, machining, and fiber communication.
Original language | English |
---|---|
Article number | 219 |
Journal | Micromachines |
Volume | 12 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2021 |
Keywords
- Broadband
- Fiber-integrated device
- Focusing efficiency
- Metalens
- Optical fiber
ASJC Scopus subject areas
- Control and Systems Engineering
- Mechanical Engineering
- Electrical and Electronic Engineering