TY - GEN
T1 - End-to-End Dense Video Captioning with Parallel Decoding
AU - Wang, Teng
AU - Zhang, Ruimao
AU - Lu, Zhichao
AU - Zheng, Feng
AU - Cheng, Ran
AU - Luo, Ping
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Dense video captioning aims to generate multiple associated captions with their temporal locations from the video. Previous methods follow a sophisticated “localize-then-describe” scheme, which heavily relies on numerous hand-crafted components. In this paper, we proposed a simple yet effective framework for end-to-end dense video captioning with parallel decoding (PDVC), by formulating the dense caption generation as a set prediction task. In practice, through stacking a newly proposed event counter on the top of a transformer decoder, the PDVC precisely segments the video into a number of event pieces under the holistic understanding of the video content, which effectively increases the coherence and readability of predicted captions. Compared with prior arts, the PDVC has several appealing advantages: (1) Without relying on heuristic non-maximum suppression or a recurrent event sequence selection network to remove redundancy, PDVC directly produces an event set with an appropriate size; (2) In contrast to adopting the two-stage scheme, we feed the enhanced representations of event queries into the localization head and caption head in parallel, making these two sub-tasks deeply interrelated and mutually promoted through the optimization; (3) Without bells and whistles, extensive experiments on ActivityNet Captions and YouCook2 show that PDVC is capable of producing high-quality captioning results, surpassing the state-of-the-art two-stage methods when its localization accuracy is on par with them. Code is available at https://github.com/ttengwang/PDVC.
AB - Dense video captioning aims to generate multiple associated captions with their temporal locations from the video. Previous methods follow a sophisticated “localize-then-describe” scheme, which heavily relies on numerous hand-crafted components. In this paper, we proposed a simple yet effective framework for end-to-end dense video captioning with parallel decoding (PDVC), by formulating the dense caption generation as a set prediction task. In practice, through stacking a newly proposed event counter on the top of a transformer decoder, the PDVC precisely segments the video into a number of event pieces under the holistic understanding of the video content, which effectively increases the coherence and readability of predicted captions. Compared with prior arts, the PDVC has several appealing advantages: (1) Without relying on heuristic non-maximum suppression or a recurrent event sequence selection network to remove redundancy, PDVC directly produces an event set with an appropriate size; (2) In contrast to adopting the two-stage scheme, we feed the enhanced representations of event queries into the localization head and caption head in parallel, making these two sub-tasks deeply interrelated and mutually promoted through the optimization; (3) Without bells and whistles, extensive experiments on ActivityNet Captions and YouCook2 show that PDVC is capable of producing high-quality captioning results, surpassing the state-of-the-art two-stage methods when its localization accuracy is on par with them. Code is available at https://github.com/ttengwang/PDVC.
UR - https://www.scopus.com/pages/publications/85127012379
U2 - 10.1109/ICCV48922.2021.00677
DO - 10.1109/ICCV48922.2021.00677
M3 - Conference article published in proceeding or book
AN - SCOPUS:85127012379
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 6827
EP - 6837
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -