TY - JOUR
T1 - Emission color tuning through manipulating the energy transfer from VO43-to Eu3+in single-phased LuVO4:Eu3+phosphors
AU - Kang, Fengwen
AU - Li, Lejing
AU - Han, Jin
AU - Lei, Dangyuan
AU - Peng, Mingying
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Recently, rare earth (RE) ion doped single-phased phosphors, which can emit tunable colors upon single wavelength excitation, have received a great deal of attention, but most of them involve multiple dopants as luminescence centers. This work reports on single-phased LuVO4:Eu3+phosphors with tunable emission colors upon a single wavelength excitation while using Eu3+as a single dopant ion. The tunable emission is realized through precisely manipulating the energy transfer efficiency from VO43-to Eu3+by controlling the Eu3+doping content, which allows modulating the photoemission intensity ratio between VO43-and Eu3+upon excitation at 265 nm and therefore color tuning from blue (0.2204, 0.2194) to red (0.6703, 0.2986). Time-resolved photoluminescence (PL) spectroscopy measurements reveal that the energy transfer process occurs 4 μs after the excitation and becomes dominant 10 μs later with the disappearance of the VO43-emission. The temperature-dependent PL spectra show that the energy transfer can be accelerated as the temperature increases, and it leads to abnormal enhancement of the Eu3+emission at the earlier state. A similar scenario is not observed upon exciting the phosphors at the intrinsic absorption of Eu3+, which implies that the reversible energy transfer from Eu3+to VO43-is impossible. Our results demonstrate a feasible strategy for tuning the emission color of single-phased phosphors through controlling the energy transfer process from the host to the dopant, and it opens up new possibilities for designing tunable luminescent materials for future optoelectronics applications.
AB - Recently, rare earth (RE) ion doped single-phased phosphors, which can emit tunable colors upon single wavelength excitation, have received a great deal of attention, but most of them involve multiple dopants as luminescence centers. This work reports on single-phased LuVO4:Eu3+phosphors with tunable emission colors upon a single wavelength excitation while using Eu3+as a single dopant ion. The tunable emission is realized through precisely manipulating the energy transfer efficiency from VO43-to Eu3+by controlling the Eu3+doping content, which allows modulating the photoemission intensity ratio between VO43-and Eu3+upon excitation at 265 nm and therefore color tuning from blue (0.2204, 0.2194) to red (0.6703, 0.2986). Time-resolved photoluminescence (PL) spectroscopy measurements reveal that the energy transfer process occurs 4 μs after the excitation and becomes dominant 10 μs later with the disappearance of the VO43-emission. The temperature-dependent PL spectra show that the energy transfer can be accelerated as the temperature increases, and it leads to abnormal enhancement of the Eu3+emission at the earlier state. A similar scenario is not observed upon exciting the phosphors at the intrinsic absorption of Eu3+, which implies that the reversible energy transfer from Eu3+to VO43-is impossible. Our results demonstrate a feasible strategy for tuning the emission color of single-phased phosphors through controlling the energy transfer process from the host to the dopant, and it opens up new possibilities for designing tunable luminescent materials for future optoelectronics applications.
UR - http://www.scopus.com/inward/record.url?scp=85009080939&partnerID=8YFLogxK
U2 - 10.1039/c6tc04172h
DO - 10.1039/c6tc04172h
M3 - Journal article
SN - 2050-7534
VL - 5
SP - 390
EP - 398
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
IS - 2
ER -