Abstract
The biosensing methods utilizing superparamagnetic nanoparticles as bio-tags and giant magneto-resistive (GMR) or tunneling magnetoresistive (TMR) sensors as signal detectors have attracted increasing interests in early disease diagnosis as well as in molecular biology research area. [1] To achieve the signal of targets, one commonly used method is to compare the sensor hysteresis loops before and after the introducing of superparamagnetic nanoparticles onto sensor surface, and the sensor response variation has been regarded as an indicator of target analyte's amount. [2, 3] However, the hysteresis effect existing in ferromagnetic material may bring an error in the sensor output reading, which can be problematic in the superparamagnetic nanoparticle signal detection. Since the hysteresis behavior exists in all magnetoresistive sensors made of ferromagnetic material, it is necessary to investigate its effect on superparamagnetic nanoparticle detection and eliminate its negative influences.
Original language | English |
---|---|
Title of host publication | 2015 IEEE International Magnetics Conference, INTERMAG 2015 |
Publisher | IEEE |
ISBN (Electronic) | 9781479973224 |
DOIs | |
Publication status | Published - 1 Jan 2015 |
Event | 2015 IEEE International Magnetics Conference, INTERMAG 2015 - Beijing, China Duration: 11 May 2015 → 15 May 2015 |
Conference
Conference | 2015 IEEE International Magnetics Conference, INTERMAG 2015 |
---|---|
Country/Territory | China |
City | Beijing |
Period | 11/05/15 → 15/05/15 |
ASJC Scopus subject areas
- Surfaces, Coatings and Films
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering