TY - GEN
T1 - Electrically Small Huygens Dipole Rectennas for Wirelessly Powering Internet-of-Things Sensors
AU - Lin, Wei
AU - Ziolkowski, Richard W.
N1 - Publisher Copyright:
© 2020 EurAAP.
PY - 2020/3
Y1 - 2020/3
N2 - Linearly-polarized (LP) and circularly-polarized (CP) electrically small Huygens dipole rectennas for wirelessly powering compact Internet-of-Things (IoT) sensors at 915 MHz in the ISM band are reported. They are realized through the seamless integration of electrically small near-field resonant parasitic-based Huygens LP and CP antennas with a highly efficient rectifier circuit. The Huygens LP (HLP) antenna achieves a cardioid-shaped realized gain (RG) pattern with RG=3.8 dBi at the targeted frequency. Similarly the Huygens CP (HCP) antenna generates a cardioid pattern with RG=3.2 dBic and a 1.7 dB axial ratio value. Notably, the HLP and HCP antennas have inductive input impedances that facilitate matching directly to the 50-\omega source, thus eliminating a lossy inductor in the original rectifier. The prototyped HLP and HCP rectennas achieve close to 90% AC to DC conversion efficiency. Light and temperature IoT sensors wirelessly powered with custom-designed versions of these rectennas are successfully demonstrated.
AB - Linearly-polarized (LP) and circularly-polarized (CP) electrically small Huygens dipole rectennas for wirelessly powering compact Internet-of-Things (IoT) sensors at 915 MHz in the ISM band are reported. They are realized through the seamless integration of electrically small near-field resonant parasitic-based Huygens LP and CP antennas with a highly efficient rectifier circuit. The Huygens LP (HLP) antenna achieves a cardioid-shaped realized gain (RG) pattern with RG=3.8 dBi at the targeted frequency. Similarly the Huygens CP (HCP) antenna generates a cardioid pattern with RG=3.2 dBic and a 1.7 dB axial ratio value. Notably, the HLP and HCP antennas have inductive input impedances that facilitate matching directly to the 50-\omega source, thus eliminating a lossy inductor in the original rectifier. The prototyped HLP and HCP rectennas achieve close to 90% AC to DC conversion efficiency. Light and temperature IoT sensors wirelessly powered with custom-designed versions of these rectennas are successfully demonstrated.
UR - http://www.scopus.com/inward/record.url?scp=85088645726&partnerID=8YFLogxK
U2 - 10.23919/EuCAP48036.2020.9135988
DO - 10.23919/EuCAP48036.2020.9135988
M3 - Conference article published in proceeding or book
AN - SCOPUS:85088645726
T3 - 14th European Conference on Antennas and Propagation, EuCAP 2020
BT - 14th European Conference on Antennas and Propagation, EuCAP 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 14th European Conference on Antennas and Propagation, EuCAP 2020
Y2 - 15 March 2020 through 20 March 2020
ER -