Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals

Qi Wei, Mingjie Li, Zhipeng Zhang, Jia Guo, Guichuan Xing, Tze Chien Sum, Wei Huang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

53 Citations (Scopus)


Doping impurity into semiconductor nanocrystals (NCs) is able to create novel optical, electronic, and magnetic functionalities. Recently, dual-emissions from Mn-doped lead chloride perovskites NCs have attracted much attention. However, the mechanisms of doping and energy-transfer to Mn ions of the perovskite NCs are still unclear. In this work, through the newly-developed post-treatment methods, it is found that excess Cl- can boost the Mn-emission due to the efficient ion diffusion and exchanges during Mn-doping processes. Importantly, a clear slow energy accumulation in the Mn dopants with time constant of ~ 200 ns is revealed from time-resolved photoluminescence (PL) measurements. Together with the doping insensitive band edge PL, these results indicate that the Mn dopants should snatch the energy from non-radiative trap states rather than from band states, which implies an efficient recycling of trapped nonradiative energy for luminescence by the dopants. The developed efficient doping method and proposed mechanism of energy transfer would provide unique insights into the mechanisms of doping. Moreover, fundamental investigations on nanostructure and optical properties are expected to increase its potential in electronic or magnetic applications.

Original languageEnglish
Pages (from-to)704-710
Number of pages7
JournalNano Energy
Publication statusPublished - Sept 2018
Externally publishedYes


  • Doped nanocrystals
  • Dual-emission
  • Perovskite
  • Semiconductor nanocrystals

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Electrical and Electronic Engineering


Dive into the research topics of 'Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals'. Together they form a unique fingerprint.

Cite this