Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications

Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, William Whyte

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

45 Citations (Scopus)

Abstract

We provide new zero-knowledge argument of knowledge systems that work directly for a wide class of language, namely, ones involving the satisfiability of matrix-vector relations and integer relations commonly found in constructions of lattice-based cryptography. Prior to this work, practical arguments for lattice-based relations either have a constant soundness error$$(2/3)$$, or consider a weaker form of soundness, namely, extraction only guarantees that the prover is in possession of a witness that “approximates” the actual witness. Our systems do not suffer from these limitations. The core of our new argument systems is an efficient zero-knowledge argument of knowledge of a solution to a system of linear equations, where variables of this solution satisfy a set of quadratic constraints. This argument enjoys standard soundness, a small soundness error$$(1/poly)$$, and a complexity linear in the size of the solution. Using our core argument system, we construct highly efficient argument systems for a variety of statements relevant to lattices, including linear equations with short solutions and matrix-vector relations with hidden matrices. Based on our argument systems, we present several new constructions of common privacy-preserving primitives in the standard lattice setting, including a group signature, a ring signature, an electronic cash system, and a range proof protocol. Our new constructions are one to three orders of magnitude more efficient than the state of the art (in standard lattice). This illustrates the efficiency and expressiveness of our argument system.

Original languageEnglish
Title of host publicationAdvances in Cryptology – CRYPTO 2019 - 39th Annual International Cryptology Conference, Proceedings
EditorsDaniele Micciancio, Alexandra Boldyreva
PublisherSpringer Verlag
Pages147-175
Number of pages29
ISBN (Print)9783030269470
DOIs
Publication statusPublished - 2019
Event39th Annual International Cryptology Conference, CRYPTO 2019 - Santa Barbara, United States
Duration: 18 Aug 201922 Aug 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11692 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference39th Annual International Cryptology Conference, CRYPTO 2019
Country/TerritoryUnited States
CitySanta Barbara
Period18/08/1922/08/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications'. Together they form a unique fingerprint.

Cite this