Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse

Wai Ella Yeung, Nicholas P. Whitehead, Thomas M. Suchyna, Philip A. Gottlieb, Frederick Sachs, David G. Allen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

224 Citations (Scopus)


The mdx mouse lacks dystrophin and is a model of human Duchenne muscular dystrophy. Single mdx muscle fibres were isolated and subjected to a series of stretched (eccentric) contractions while measuring intracellular calcium concentration ([Ca2+]i) with fluo-3 and confocal microscopy. Following the stretched contractions there was a slow rise in resting [Ca2+]i and after 30 min both the [Ca2+]i during a tetanus (tetanic [Ca2+]i) and the tetanic force were reduced. Two blockers of stretch-activated channels, streptomycin and the spider venom toxin GsMTx4, prevented the rise of resting [Ca2+]i and partially prevented the decline of tetanic [Ca2+]i and force. Reducing extracellular calcium to zero also prevented the rise in resting [Ca2+]i and prevented some of the decline in tetanic [Ca2+]i and force. Patch-clamping experiments identified a stretch-activated channel in both wild-type and mdx myotubes which was blocked by GsMTx4. These data suggest that blockers of stretch-activated channels can ameliorate the force reduction following stretched contractions by reducing the influx of Ca2+ into the muscle. We therefore tested whether in intact mdx mice streptomycin, added to the drinking water, was capable of reducing muscle damage. mdx mice show a period of muscle damage from 20 to 40 days of life and fibres which regenerate from this damage display central nuclei. We measured the frequency of central nuclei in control mdx mice compared to streptomycin-treated mdx mice and showed that the incidence of central nuclei was significantly reduced by streptomycin treatment. This result suggests that blockers of stretch-activated channels may protect against muscle damage in the intact mdx mouse.
Original languageEnglish
Pages (from-to)367-380
Number of pages14
JournalJournal of Physiology
Issue number2
Publication statusPublished - 15 Jan 2005

ASJC Scopus subject areas

  • Physiology


Dive into the research topics of 'Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse'. Together they form a unique fingerprint.

Cite this