TY - JOUR
T1 - Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli
AU - Ren, Ge
AU - Wang, Zhou
AU - Li, Ye
AU - Hu, Xiaoqing
AU - Wang, Xiaoyuan
N1 - Funding Information:
This study was supported by the National Natural Science Foundation of China (grants 31170069 and 31201290). This work, including the efforts of Xiaoyuan Wang, was funded by National Natural Science Foundation of China (NSFC) (31170069). This work, including the efforts of Xiaoqing Hu, was funded by National Natural Science Foundation of China (NSFC) (31201290).
Publisher Copyright:
© 2016, American Society for Microbiology.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - When 10 Escherichia coli mutant strains with defects in lipopolysaccharide (LPS) core biosynthesis were grown on agar medium at 30°C, four of them, the ΔwaaF, ΔwaaG, ΔwaaP, and ΔwaaB strains, formed mucoid colonies, while the other six, the ΔwaaU, ΔwaaR, ΔwaaO, ΔwaaC, ΔwaaQ, and ΔwaaY strains, did not. Using light microscopy with tannin mordant staining, the presence of exopolysaccharide around the cells of the mutants that formed mucoid colonies could be discerned. The ΔwaaF mutant produced the largest amounts of exopolysaccharide, regardless of whether it was grown on agar or in liquid medium. The exopolysaccharide was isolated from the liquid growth medium of ΔwaaF cells, hydrolyzed, and analyzed by high-performance liquid chromatography with an ion-exchange column, and the results indicated that the exopolysaccharide was consistent with colanic acid. When the key genes related to the biosynthesis of colanic acid, i.e., wza, wzb, wzc, and wcaA, were deleted in the ΔwaaF background, the exopolysaccharide could not be produced any more, further confirming that it was colanic acid. Colanic acid could not be produced in strains in which rcsA, rcsB, rcsD, or rcsF was deleted in the ΔwaaF background, but a reduced level of colanic acid production was detected when the rcsC gene was deleted, suggesting that a change of lipopolysaccharide structure in ΔwaaF cells might be sensed by the RcsCDB phosphorelay system, leading to the production of colanic acid. The results demonstrate that E. coli cells can activate colanic acid production through the RcsCDB phosphorelay system in response to a structural deficiency of lipopolysaccharide.
AB - When 10 Escherichia coli mutant strains with defects in lipopolysaccharide (LPS) core biosynthesis were grown on agar medium at 30°C, four of them, the ΔwaaF, ΔwaaG, ΔwaaP, and ΔwaaB strains, formed mucoid colonies, while the other six, the ΔwaaU, ΔwaaR, ΔwaaO, ΔwaaC, ΔwaaQ, and ΔwaaY strains, did not. Using light microscopy with tannin mordant staining, the presence of exopolysaccharide around the cells of the mutants that formed mucoid colonies could be discerned. The ΔwaaF mutant produced the largest amounts of exopolysaccharide, regardless of whether it was grown on agar or in liquid medium. The exopolysaccharide was isolated from the liquid growth medium of ΔwaaF cells, hydrolyzed, and analyzed by high-performance liquid chromatography with an ion-exchange column, and the results indicated that the exopolysaccharide was consistent with colanic acid. When the key genes related to the biosynthesis of colanic acid, i.e., wza, wzb, wzc, and wcaA, were deleted in the ΔwaaF background, the exopolysaccharide could not be produced any more, further confirming that it was colanic acid. Colanic acid could not be produced in strains in which rcsA, rcsB, rcsD, or rcsF was deleted in the ΔwaaF background, but a reduced level of colanic acid production was detected when the rcsC gene was deleted, suggesting that a change of lipopolysaccharide structure in ΔwaaF cells might be sensed by the RcsCDB phosphorelay system, leading to the production of colanic acid. The results demonstrate that E. coli cells can activate colanic acid production through the RcsCDB phosphorelay system in response to a structural deficiency of lipopolysaccharide.
UR - https://www.scopus.com/pages/publications/84971526237
U2 - 10.1128/JB.00094-16
DO - 10.1128/JB.00094-16
M3 - Journal article
C2 - 27002133
AN - SCOPUS:84971526237
SN - 0021-9193
VL - 198
SP - 1576
EP - 1584
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 11
ER -