Effects of heat stress on construction labor productivity in Hong Kong: A case study of rebar workers

Research output: Journal article publicationJournal articleAcademic researchpeer-review

44 Citations (Scopus)

Abstract

Licensee MDPI, Basel, Switzerland. Global warming is bringing more frequent and severe heat waves, and the result will be serious for vulnerable populations such as construction workers. Excessive heat stress has profound effects on physiological responses, which cause occupational injuries, fatalities and low productivity. Construction workers are particularly affected by heat stress, because of the body heat production caused by physically demanding tasks, and hot and humid working conditions. Field studies were conducted between August and September 2016 at two construction training grounds in Hong Kong. Onsite wet-bulb globe temperature (WBGT), workers’ heart rate (HR), and labor productivity were measured and monitored. Based on the 378 data sets of synchronized environmental, physiological, construction labor productivity (CLP), and personal variables, a CLP-heat stress model was established. It was found that WBGT, percentage of maximum HR, age, work duration, and alcohol drinking habits were determining factors for predicting the CLP (adjusted R2= 0.68, p<0.05).The model revealed that heat stress reduces CLP,with the percentage of direct work time decreasing by 0.33% when the WBGT increased by 1 ◦C. The findings in this study extend the existing practice notes by providing scientific data that may be of benefit to the industry in producing solid guidelines for working in hot weather.
Original languageEnglish
Article number1055
JournalInternational Journal of Environmental Research and Public Health
Volume14
Issue number9
DOIs
Publication statusPublished - 12 Sep 2017

Keywords

  • Construction labor productivity
  • Heat stress
  • Steel bar fixing

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Cite this