Abstract
Cross-flow turbines offer a promising, cost-effective solution to harvest hydropower from water mains to supply power to water monitoring systems. However, the design and performance of cross-flow turbines in water mains have not been fully investigated. In this paper, an inline cross-flow turbine configuration with two blocks is proposed and a block design method is presented. Specifically, numerical investigations are carried out to verify the proposed method and study the effect of different block designs on turbine performance. Flow velocity analysis shows that the proposed block can improve the flow attack angle at the runner inlet and significantly increase the flow velocity through the runner. In addition, the pressure distribution indicates that the blocks can increase the pressure difference through the runner and thus improve turbine performance. A comparison of three models with different guide block orientation angles reveals that the model with the largest conversion block orientation angle performs best, because the blocks from this model not only function better in terms of flow separation and negative torque reduction at the first stage, but also convert more water head into kinetic energy. Numerical results show that the inline turbine can achieve its maximum efficiency of 42.4% with a power output of about 1500 W and that the water head reduction is limited within an acceptable range.
Original language | English |
---|---|
Pages (from-to) | 97-107 |
Number of pages | 11 |
Journal | Applied Energy |
Volume | 228 |
DOIs | |
Publication status | Published - 15 Oct 2018 |
Keywords
- Inline cross-flow turbine
- Micro hydropower
- Urban water mains
- Water monitoring system
ASJC Scopus subject areas
- Building and Construction
- General Energy
- Mechanical Engineering
- Management, Monitoring, Policy and Law