Effects of calcium carbonate on pyrolysis of sewage sludge

Eilhann E. Kwon, Taewoo Lee, Yong Sik Ok, Daniel C.W. Tsang, Chanhyuk Park, Jechan Lee

Research output: Journal article publicationJournal articleAcademic researchpeer-review

150 Citations (Scopus)

Abstract

This study demonstrates that calcium carbonate (CaCO 3) allows not only enhancement of the production of CO as syngas, but also reduction of the content of polycyclic aromatic hydrocarbons (PAHs) in the pyrolytic products from sewage sludge. CO 2 was formed by the decomposition of CaCO 3 in pyrolysis. The CO 2 derived from CaCO 3 enhanced thermal cracking of volatile organic carbons (VOCs) generated during the pyrolysis of sewage sludge and provided an additional source of C and O, likely enhancing the production of CO at >650 °C. In addition, more solid product was converted into gaseous and liquid products by the addition of CaCO 3 in the pyrolysis of sewage sludge. This work suggests that CaCO 3 can be used as an inexpensive source of CO 2 that increases thermal efficiency of the pyrolysis process and reduces the evolution of harmful chemical species such as PAHs during thermal treatment of the byproduct during processing at municipal and industrial wastewater treatment facilities (i.e., sewage sludge).

Original languageEnglish
Pages (from-to)726-731
Number of pages6
JournalEnergy
Volume153
DOIs
Publication statusPublished - 15 Jun 2018

Keywords

  • CaCO
  • Pyrolysis
  • Sewage sludge
  • Thermal treatment
  • Waste-to-energy

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • Pollution
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Effects of calcium carbonate on pyrolysis of sewage sludge'. Together they form a unique fingerprint.

Cite this