Effectiveness of Spatiotemporal Data Fusion in Fine-Scale Land Surface Phenology Monitoring: A Simulation Study

Jiaqi Tian, Xiaolin Zhu, Miaogen Shen, Jin Chen, Ruyin Cao, Yuean Qiu, Yi Nam Xu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Spatiotemporal data fusion technologies have been widely used for land surface phenology (LSP) monitoring since it is a low-cost solution to obtain fine-resolution satellite time series. However, the reliability of fused images is largely affected by land surface heterogeneity and input data. It is unclear whether data fusion can really benefit LSP studies at fine scales. To explore this research question, this study designed a sophisticated simulation experiment to quantify effectiveness of 2 representative data fusion algorithms, namely, pair-based Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and time series-based Spatiotemporal fusion method to Simultaneously generate Full-length normalized difference vegetation Index Time series (SSFIT) by fusing Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data in extracting pixel-wise spring phenology (i.e., the start of the growing season, SOS) and its spatial gradient and temporal variation. Our results reveal that: (a) STARFM can improve the accuracy of pixel-wise SOS by up to 74.47% and temporal variation by up to 59.13%, respectively, compared with only using Landsat images, but it can hardly improve the retrieval of spatial gradient. For SSFIT, the accuracy of pixel-wise SOS, spatial gradient, and temporal variation can be improved by up to 139.20%, 26.36%, and 162.30%, respectively; (b) the accuracy improvement introduced by fusion algorithms decreases with the number of available Landsat images per year, and it has a large variation with the same number of available Landsat images, and (c) this large variation is highly related to the temporal distributions of available Landsat images, suggesting that fusion algorithms can improve SOS accuracy only when cloud-free Landsat images cannot capture key vegetation growth period. This study calls for caution with the use of data fusion in LSP studies at fine scales.

Original languageEnglish
Article number0118
JournalJournal of Remote Sensing (United States)
Volume4
DOIs
Publication statusPublished - Jan 2024

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)
  • Instrumentation
  • Geography, Planning and Development

Fingerprint

Dive into the research topics of 'Effectiveness of Spatiotemporal Data Fusion in Fine-Scale Land Surface Phenology Monitoring: A Simulation Study'. Together they form a unique fingerprint.

Cite this