Effect of river flow on the quality of estuarine and coastal waters using machine learning models

Mohamad Javad Alizadeh, Mohamad Reza Kavianpour, Malihe Danesh, Jason Adolf, Shahabbodin Shamshirband, Kwok Wing Chau

Research output: Journal article publicationJournal articleAcademic researchpeer-review

171 Citations (Scopus)


This study explores the river-flow-induced impacts on the performance of machine learning models applied for forecasting of water quality parameters in the coastal waters in Hilo Bay, Pacific Ocean. For this purpose, hourly recorded water quality parameters of salinity, temperature and turbidity as well as the flow data of the Wailuku River were used. Several machine learning models including artificial neural network, extreme learning machine and support vector regression have been employed to investigate the river-flow-induced impact on the water quality parameters from the current time up to 2 h ahead. Following the input structure of the machine learning models, two separate models based on including and excluding the river flow were developed for each variable to quantify the importance of the flow discharge on the accuracy of the forecasting models. The performance of different machine learning models was found to be close to each other and showing similar pattern considering accuracy and uncertainty of the forecasts. The results revealed that flow discharge influenced the water salinity and turbidity of the bay in which the models including the river flow as input variables had better performance compared with those excluding the flow time series. Among the water quality parameters investigated in this research, river flow made the most and least improvement on the efficiency of the models applied for forecasting of turbidity and water temperature, respectively. Overall, it was observed that water quality parameters can be properly forecasted up to several hours ahead providing a potentially valuable tool for environmental management and monitoring in coastal areas.

Original languageEnglish
Pages (from-to)810-823
Number of pages14
JournalEngineering Applications of Computational Fluid Mechanics
Issue number1
Publication statusPublished - 1 Jan 2018


  • Estuarine and coastal waters
  • Machine learning
  • River flow
  • Salinity
  • Turbidity
  • Water quality

ASJC Scopus subject areas

  • General Computer Science
  • Modelling and Simulation


Dive into the research topics of 'Effect of river flow on the quality of estuarine and coastal waters using machine learning models'. Together they form a unique fingerprint.

Cite this