Effect of Nb content on microstructural evolution, mechanical and tribological properties of in situ alloyed copper-modified titanium produced using laser powder bed fusion

Yaojia Ren, Zhicheng Li, Qingge Wang, Jingbo Liu, Lijun Zhang, Min Song, Shifeng Liu, Sheng Guo, Zengbao Jiao, Ian Baker, Hong Wu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

2 Citations (Scopus)

Abstract

Control of the columnar to equiaxed transition (CET) is a major challenge in additively manufactured β titanium alloys. In this work, the promotion of CET was successfully achieved through in-situ fabrication of Ti-5Cu (wt.%) alloys with additions of 5, 15, and 25 wt.% Nb using elemental Ti, Cu, and Nb powders by employing laser powder bed fusion (LPBF). The alloy containing 5 wt.% Nb consisted of α lamellae, Ti2Cu precipitates, and unmelted β-Nb inclusions, whereas the 25 wt.% Nb alloy consisted of equiaxed β grains, ω precipitates, and Ti2Cu precipitates at the grain boundaries. In terms of mechanical properties, despite the presence of Nb inclusions and liquation cracks in the 5 wt.% Nb alloy, it showed a yield strength of 1051 ± 40 MPa and an elongation of 5.2 % ± 1.3 %. Both the strength and ductility decreased with increasing Nb content, e.g., the 25 wt.% Nb alloy exhibited a yield strength of 808 ± 53 MPa and an elongation of 1.6 % ± 0.2 %. As the Nb content increased from 5 to 25 wt.%, the Young's modulus decreased from 110 to 65 GPa. The 25 wt.% Nb alloy showed a high ratio of hardness to Young's modulus (H/E) and yield pressure (H3/E2). However, due to its brittle nature, the material manifested high wear rates. These findings provide a basis for the future development of novel low-modulus isotropic β-titanium alloys using LPBF.

Original languageEnglish
Pages (from-to)257-270
Number of pages14
JournalJournal of Materials Science and Technology
Volume219
DOIs
Publication statusPublished - 1 Jun 2025

Keywords

  • Columnar to equiaxed transition
  • Laser powder bed fusion
  • Tensile properties
  • Titanium alloys
  • Tribological behavior

ASJC Scopus subject areas

  • Ceramics and Composites
  • Mechanics of Materials
  • Mechanical Engineering
  • Polymers and Plastics
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effect of Nb content on microstructural evolution, mechanical and tribological properties of in situ alloyed copper-modified titanium produced using laser powder bed fusion'. Together they form a unique fingerprint.

Cite this