Effect of Malware Spreading on Propagation of Cascading Failure in Cyber-Coupled Power Systems

Dong Liu, Xi Zhang, Chi K. Tse

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

2 Citations (Scopus)

Abstract

In this paper, we consider the failure propagation in a power system which is coupled with a cyber network. We identify the ratio of the infection rate of malware to the tripping rate of elements in the power network, defined as cyber-physical propagation ratio (CPPR), as a crucial parameter, and show that CPPR affects the propagation pattern. When CPPR is very small, the overloading effect in the power system dominates, and the failure propagation profile shows a typical 'jump' or step pattern. Moreover, as CPPR increases, the step magnitude rapidly reduces and becomes less noticeable. Furthermore, we develop a simple approach to distinguish various propagation patterns for different values of CPPR. Results show that CPPR effectively characterizes the significance of cyber coupling and hence the relative impact of malicious attack from the cyber network, and its value determines how cascading failure propagates in a cyber-coupled power network.

Original languageEnglish
Title of host publication2018 IEEE International Symposium on Circuits and Systems, ISCAS 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538648810
DOIs
Publication statusPublished - 26 Apr 2018
Event2018 IEEE International Symposium on Circuits and Systems, ISCAS 2018 - Florence, Italy
Duration: 27 May 201830 May 2018

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2018-May
ISSN (Print)0271-4310

Conference

Conference2018 IEEE International Symposium on Circuits and Systems, ISCAS 2018
Country/TerritoryItaly
CityFlorence
Period27/05/1830/05/18

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this