Effect of initial tempers on mechanical properties of creep-aged AA2050

Yong Li, Yo Lun Yang, Qi Rong, Zhusheng Shi (Corresponding Author), Jianguo Lin, Rajab Said

Research output: Journal article publicationJournal articleAcademic researchpeer-review

4 Citations (Scopus)

Abstract

The evolution of mechanical properties of a third-generation Al-Cu-Li alloy, AA2050, with different initial tempers (as-quenched WQ, naturally aged T34 and peak-aged T84) during creep-ageing has been investigated in this study. A set of creep-ageing tests was carried out under 150 MPa at 155 °C with different durations for all initial temper conditions and tensile tests were performed subsequently to acquire the main mechanical properties of the creep-aged alloys, including the yield strength, ultimate tensile strength and uniform elongation. The evolution of these mechanical properties during creep-ageing has been discussed in association with precipitation behaviour of AA2050 alloys with different initial tempers. The results indicate that the T34 alloy is the best choice for creep age forming (CAF) applications among these initial tempers, as it provides better yield strength and uniform elongation concurrently after creep-ageing. In addition, a work hardening rate analysis has been carried out for all the creep-aged alloys, helping to understand the detailed dislocation/precipitate interaction mechanisms during plastic deformation in the creep-aged AA2050 alloys with WQ, T34 and T84 initial tempers.

Original languageEnglish
Article number8
Number of pages8
JournalManufacturing Review
Volume6
DOIs
Publication statusPublished - 2019
Externally publishedYes

Keywords

  • AA2050
  • Al-Cu-Li alloy
  • Creep age forming
  • Initial temper
  • Mechanical property
  • Work hardening

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Effect of initial tempers on mechanical properties of creep-aged AA2050'. Together they form a unique fingerprint.

Cite this