Abstract
Utilizing molecular bridges presents a promising means to enhance the performance of perovskite solar cells (PSCs). However, concurrently bridging the perovskite absorber and its two adjacent interfaces remains a significant challenge that is yet to be achieved. Here, we construct dual molecular bridges at perovskite heterointerfaces, enabled by a self-organizing additive of 4-fluoro-phenethylammonium formate (4-F-PEAFa) and a synthesized hole transporter of [2-(7H-dibenzo[c, g]carbazol-7-yl)ethyl]phosphonic acid (DBZ-2PACz). The molecular bridges spanning two interfaces lead to the formation of an 'integral carrier transport pathway', mitigating both non-radiative recombination and charge-transport losses in the fabricated PSC devices. We thus achieve a champion power conversion efficiency (PCE) of 26.0% (25.6% certified) in inverted PSCs, accompanied by an exceptionally high fill factor of 0.87 (maximum 0.88 from the certified devices, 97% of its Shockley-Queisser limit) and a low ideality factor of 1.06. The unencapsulated devices retain 96% of their PCEs after aging at 85°C for 2200 h and 90% after maximum power point tracking at an elevated temperature of 50°C for 973 h.
| Original language | English |
|---|---|
| Article number | nwaf211 |
| Pages (from-to) | 1-9 |
| Journal | National Science Review |
| Volume | 12 |
| Issue number | 7 |
| DOIs | |
| Publication status | Published - May 2025 |
Keywords
- heterointerface engineering
- molecular bridge
- perovskite solar cell
- self-assemble material
ASJC Scopus subject areas
- General