TY - GEN
T1 - Does Gender Matter? Towards Fairness in Dialogue Systems
AU - Liu, Haochen
AU - Dacon, Jamell
AU - Fan, Wenqi
AU - Liu, Hui
AU - Liu, Zitao
AU - Tang, Jiliang
N1 - Publisher Copyright:
© 2020 COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Recently there are increasing concerns about the fairness of Artificial Intelligence (AI) in real-world applications such as computer vision and recommendations. For example, recognition algorithms in computer vision are unfair to black people such as poorly detecting their faces and inappropriately identifying them as “gorillas”. As one crucial application of AI, dialogue systems have been extensively applied in our society. They are usually built with real human conversational data; thus they could inherit some fairness issues which are held in the real world. However, the fairness of dialogue systems has not been well investigated. In this paper, we perform a pioneering study about the fairness issues in dialogue systems. In particular, we construct a benchmark dataset and propose quantitative measures to understand fairness in dialogue models. Our studies demonstrate that popular dialogue models show significant prejudice towards different genders and races. Besides, to mitigate the bias in dialogue systems, we propose two simple but effective debiasing methods. Experiments show that our methods can reduce the bias in dialogue systems significantly.
AB - Recently there are increasing concerns about the fairness of Artificial Intelligence (AI) in real-world applications such as computer vision and recommendations. For example, recognition algorithms in computer vision are unfair to black people such as poorly detecting their faces and inappropriately identifying them as “gorillas”. As one crucial application of AI, dialogue systems have been extensively applied in our society. They are usually built with real human conversational data; thus they could inherit some fairness issues which are held in the real world. However, the fairness of dialogue systems has not been well investigated. In this paper, we perform a pioneering study about the fairness issues in dialogue systems. In particular, we construct a benchmark dataset and propose quantitative measures to understand fairness in dialogue models. Our studies demonstrate that popular dialogue models show significant prejudice towards different genders and races. Besides, to mitigate the bias in dialogue systems, we propose two simple but effective debiasing methods. Experiments show that our methods can reduce the bias in dialogue systems significantly.
UR - http://www.scopus.com/inward/record.url?scp=85142692969&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85142692969
T3 - COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference
SP - 4403
EP - 4416
BT - COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference
A2 - Scott, Donia
A2 - Bel, Nuria
A2 - Zong, Chengqing
PB - Association for Computational Linguistics (ACL)
T2 - 28th International Conference on Computational Linguistics, COLING 2020
Y2 - 8 December 2020 through 13 December 2020
ER -