TY - JOUR
T1 - Distribution and Risk Assessment of Organophosphate Esters in Agricultural Soils and Plants in the Coastal Areas of South China
AU - Luo, Wangxing
AU - Yao, Siyu
AU - Huang, Jiahui
AU - Wu, Haochuan
AU - Zhou, Haijun
AU - Du, Mingjiang
AU - Jin, Ling
AU - Sun, Jianteng
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/4
Y1 - 2024/4
N2 - Organophosphate esters (OPEs) are frequently used as flame retardants and plasticizers in various commercial products. While initially considered as substitutes for brominated flame retardants, they have faced restrictions in some countries due to their toxic effects on organisms. We collected 37 soil and crop samples in 20 cities along the coast of South China, and OPEs were detected in all of them. Meanwhile, we studied the contamination and potential human health risks of OPEs. In soil samples, the combined concentrations of eight OPEs varied between 74.7 and 410 ng/g, averaging at 255 ng/g. Meanwhile, in plant samples, the collective concentrations of eight OPEs ranged from 202 to 751 ng/g, with an average concentration of 381 ng/g. TDCIPP, TCPP, TCEP, and ToCP were the main OPE compounds in both plant and soil samples. Within the study area, the contaminants showed different spatial distributions. Notably, higher OPEs were found in coastal agricultural soils in Guangdong Province and crops in the Guangxi Zhuang Autonomous Region. The results of an ecological risk assessment show that the farmland soil along the southern coast of China is at high or medium ecological risk. The average non-carcinogenic risk and the carcinogenic risk of OPEs in soil through ingestion and dermal exposure routes are within acceptable levels. Meanwhile, this study found that the dietary intake of OPEs through food is relatively low, but twice as high as other studies, requiring serious attention. The research findings suggest that the human risk assessment indicates potential adverse effects on human health due to OPEs in the soil–plant system along the coast of South China. This study provides a crucial foundation for managing safety risks in agricultural operations involving OPEs.
AB - Organophosphate esters (OPEs) are frequently used as flame retardants and plasticizers in various commercial products. While initially considered as substitutes for brominated flame retardants, they have faced restrictions in some countries due to their toxic effects on organisms. We collected 37 soil and crop samples in 20 cities along the coast of South China, and OPEs were detected in all of them. Meanwhile, we studied the contamination and potential human health risks of OPEs. In soil samples, the combined concentrations of eight OPEs varied between 74.7 and 410 ng/g, averaging at 255 ng/g. Meanwhile, in plant samples, the collective concentrations of eight OPEs ranged from 202 to 751 ng/g, with an average concentration of 381 ng/g. TDCIPP, TCPP, TCEP, and ToCP were the main OPE compounds in both plant and soil samples. Within the study area, the contaminants showed different spatial distributions. Notably, higher OPEs were found in coastal agricultural soils in Guangdong Province and crops in the Guangxi Zhuang Autonomous Region. The results of an ecological risk assessment show that the farmland soil along the southern coast of China is at high or medium ecological risk. The average non-carcinogenic risk and the carcinogenic risk of OPEs in soil through ingestion and dermal exposure routes are within acceptable levels. Meanwhile, this study found that the dietary intake of OPEs through food is relatively low, but twice as high as other studies, requiring serious attention. The research findings suggest that the human risk assessment indicates potential adverse effects on human health due to OPEs in the soil–plant system along the coast of South China. This study provides a crucial foundation for managing safety risks in agricultural operations involving OPEs.
KW - agriculture soil
KW - ecological risk
KW - human risk assessments
KW - organophosphate esters
KW - plant
UR - http://www.scopus.com/inward/record.url?scp=85191742668&partnerID=8YFLogxK
U2 - 10.3390/toxics12040286
DO - 10.3390/toxics12040286
M3 - Journal article
AN - SCOPUS:85191742668
SN - 2305-6304
VL - 12
JO - Toxics
JF - Toxics
IS - 4
M1 - 286
ER -