Abstract
Tailored defects on a semiconductor surface can provide active catalytic sites and effectively tune the electronic structure for suitable optical properties. Herein, we report that surface modification of WO 3 with a disordered layer enables the photochemical hydrogen production from water. A simple room temperature solution process with lithium-ethylenediamine (Li-EDA) alters the surface of WO 3 with localized defects that form a thin disordered layer. Both structural and optical characterization reveal that such a disordered layer induces an upshift in the Fermi level and the elevation of the conduction band of WO 3 above the hydrogen reduction potential. Using an alkaline sacrificial agent, Li-EDA treated WO 3 shows a co-catalyst-free photochemical hydrogen evolution rate of 94.2 μmol g -1 h -1 under simulated sunlight. To the best of our knowledge, this is the first example of using WO 3 as a direct photocatalyst for hydrogen generation from water via simple surface defect engineering.
Original language | English |
---|---|
Pages (from-to) | 221-227 |
Number of pages | 7 |
Journal | Journal of Materials Chemistry A |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2019 |
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science