Discovering latent class labels for multi-label learning

Jun Huang, Linchuan Xu, Jing Wang, Lei Feng, Kenji Yamanishi

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

8 Citations (Scopus)

Abstract

Existing multi-label learning (MLL) approaches mainly assume all the labels are observed and construct classification models with a fixed set of target labels (known labels). However, in some real applications, multiple latent labels may exist outside this set and hidden in the data, especially for large-scale data sets. Discovering and exploring the latent labels hidden in the data may not only find interesting knowledge but also help us to build a more robust learning model. In this paper, a novel approach named DLCL (i.e., Discovering Latent Class Labels for MLL) is proposed which can not only discover the latent labels in the training data but also predict new instances with the latent and known labels simultaneously. Extensive experiments show a competitive performance of DLCL against other state-of-the-art MLL approaches.

Original languageEnglish
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3058-3064
Number of pages7
ISBN (Electronic)9780999241165
Publication statusPublished - 2020
Externally publishedYes
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: 1 Jan 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January
ISSN (Print)1045-0823

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Country/TerritoryJapan
CityYokohama
Period1/01/21 → …

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Discovering latent class labels for multi-label learning'. Together they form a unique fingerprint.

Cite this