TY - GEN
T1 - Direct training for spiking neural networks
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
AU - Wu, Yujie
AU - Deng, Lei
AU - Li, Guoqi
AU - Zhu, Jun
AU - Xie, Yuan
AU - Shi, Luping
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019/7
Y1 - 2019/7
N2 - Spiking neural networks (SNNs) that enables energy efficient implementation on emerging neuromorphic hardware are gaining more attention. Yet now, SNNs have not shown competitive performance compared with artificial neural networks (ANNs), due to the lack of effective learning algorithms and efficient programming frameworks. We address this issue from two aspects: (1) We propose a neuron normalization technique to adjust the neural selectivity and develop a direct learning algorithm for deep SNNs. (2) Via narrowing the rate coding window and converting the leaky integrate-and-fire (LIF) model into an explicitly iterative version, we present a Pytorch-based implementation method towards the training of large-scale SNNs. In this way, we are able to train deep SNNs with tens of times speedup. As a result, we achieve significantly better accuracy than the reported works on neuromorphic datasets (N-MNIST and DVSCIFAR10), and comparable accuracy as existing ANNs and pre-trained SNNs on non-spiking datasets (CIFAR10). To our best knowledge, this is the first work that demonstrates direct training of deep SNNs with high performance on CIFAR10, and the efficient implementation provides a new way to explore the potential of SNNs.
AB - Spiking neural networks (SNNs) that enables energy efficient implementation on emerging neuromorphic hardware are gaining more attention. Yet now, SNNs have not shown competitive performance compared with artificial neural networks (ANNs), due to the lack of effective learning algorithms and efficient programming frameworks. We address this issue from two aspects: (1) We propose a neuron normalization technique to adjust the neural selectivity and develop a direct learning algorithm for deep SNNs. (2) Via narrowing the rate coding window and converting the leaky integrate-and-fire (LIF) model into an explicitly iterative version, we present a Pytorch-based implementation method towards the training of large-scale SNNs. In this way, we are able to train deep SNNs with tens of times speedup. As a result, we achieve significantly better accuracy than the reported works on neuromorphic datasets (N-MNIST and DVSCIFAR10), and comparable accuracy as existing ANNs and pre-trained SNNs on non-spiking datasets (CIFAR10). To our best knowledge, this is the first work that demonstrates direct training of deep SNNs with high performance on CIFAR10, and the efficient implementation provides a new way to explore the potential of SNNs.
UR - https://www.scopus.com/pages/publications/85089887227
U2 - 10.1609/aaai.v33i01.33011311
DO - 10.1609/aaai.v33i01.33011311
M3 - Conference article published in proceeding or book
AN - SCOPUS:85089887227
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 1311
EP - 1318
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
Y2 - 27 January 2019 through 1 February 2019
ER -