DiGNet: Learning Scalable Self-Driving Policies for Generic Traffic Scenarios with Graph Neural Networks

Peide Cai, Hengli Wang, Yuxiang Sun, Ming Liu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

10 Citations (Scopus)

Abstract

Traditional decision and planning frameworks for self-driving vehicles (SDVs) scale poorly in new scenarios, thus they require tedious hand-tuning of rules and parameters to maintain acceptable performance in all foreseeable cases. Recently, self-driving methods based on deep learning have shown promising results with better generalization capability but less hand engineering effort. However, most of the previous learning-based methods are trained and evaluated in limited driving scenarios with scattered tasks, such as lane-following, autonomous braking, and conditional driving. In this paper, we propose a graph-based deep network to achieve scalable self-driving that can handle massive traffic scenarios. Specifically, more than 7,000 km of evaluation is conducted in a high-fidelity driving simulator, in which our method can obey the traffic rules and safely navigate the vehicle in a large variety of urban, rural, and highway environments, including unprotected left turns, narrow roads, roundabouts, and pedestrian-rich intersections. Demonstration videos are available at https: //caipeide.github.io/dignet/.

Original languageEnglish
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8979-8984
Number of pages6
ISBN (Electronic)9781665417143
DOIs
Publication statusPublished - Dec 2021
Event2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 - Prague, Czech Republic
Duration: 27 Sept 20211 Oct 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Country/TerritoryCzech Republic
CityPrague
Period27/09/211/10/21

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'DiGNet: Learning Scalable Self-Driving Policies for Generic Traffic Scenarios with Graph Neural Networks'. Together they form a unique fingerprint.

Cite this