Digital twin-enabled Graduation Intelligent Manufacturing System for fixed-position assembly islands

Daqiang Guo, Ray Y. Zhong, Peng Lin, Zhongyuan Lyu, Yiming Rong, George Q. Huang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

92 Citations (Scopus)

Abstract

The layout of fixed-position assembly islands is widely used in the heavy equipment industry, where the product remains at one assembly island for its entire assembly period, while required workers, equipment, and materials are moved to the island according to the assembly plan. Such layout is not only suitable for producing bulky or fragile products, but also offers considerable flexibility and competitive operational efficiency for products with medium variety and volumes. However, due to inherent complexity of the product, sophisticated assembly operations heavily rely on skilled operators, and the complexity and uncertainty are high and amplified by such massive manual interventions as well as the unique routing patterns of the fixed-position assembly process. Aiming at reducing the complexity and uncertainty, this paper introduces a digital twin-enabled Graduation Intelligent Manufacturing System (DT-GiMS) for fixed-position assembly islands. Inspired by the success of graduation ceremony, an assembly system-Graduation Manufacturing System (GMS) is proposed for fixed-position assembly islands, in which job tickets, setup tickets, operation tickets, and logistics tickets are designed to organize the production activities. Following the concept of digital twin, unified digital representations with appropriate sets of information are created at object level, product level, and system level, respectively. Through Internet of Things (IoT), smart gateway, Web 3D and industrial wearable technologies, vital information including identity, status, geometric model, and production process can be captured and mapped in physical space, and converged and synchronized with their digital representations in twin (cloud) space on a real-time basis. The overall framework of DT-GiMS is presented with physical layer, digital layer, and service layer. Real-time convergence and synchronization among them ensure that right resources are allocated and utilized to the right activities at the right time with enhanced visibility. Considering customer demand and production capacity constraints, real-time ticket pool management mechanisms are proposed to manage production activities in a near-optimal way under DT-GiMS. With the support of cloud-based services provided in service layer in DT-GiMS, managers could easily make production decisions, and onsite operators could efficiently complete their daily tasks with nearly error-free operations with enhanced visibility. A demonstrative case is carried out to verify the effectiveness of the proposed concept and approach.

Original languageEnglish
Article number101917
Number of pages13
JournalRobotics and Computer-Integrated Manufacturing
Volume63
DOIs
Publication statusPublished - Jun 2020
Externally publishedYes

Keywords

  • Cloud-based services
  • Digital twin
  • Fixed-position assembly
  • Intelligent manufacturing system
  • Real-time synchronization

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • General Mathematics
  • Computer Science Applications
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Digital twin-enabled Graduation Intelligent Manufacturing System for fixed-position assembly islands'. Together they form a unique fingerprint.

Cite this