Development of Variable Transmission Series Elastic Actuator for Hip Exoskeletons

Tianci Wang, Hao Wen, Zaixin Song, Zhiping Dong, Chunhua Liu (Corresponding Author)

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Series Elastic Actuator-based exoskeleton can offer precise torque control and transparency when interacting with human wearers. Accurate control of SEA-produced torques ensures the wearer's voluntary motion and supports the implementation of multiple assistive paradigms. In this paper, a novel variable transmission series elastic actuator (VTSEA) is developed to meet torque-speed requirements in different exoskeleton-assisted locomotion modes, such as running, walking, sit-to-stand, and stand-to-sit. The VTSEA features a SEA-coupled variable transmission ratio adjusting mechanism and works between three discrete levels of transmission ratio depending on the user's initiative. The proposed prototype can also improve transparency in human-robot interaction. Also, an accurate torque controller with inertial compensation is developed for the VTSEA via the singular perturbation theory, and its stability is proved. The feasibility of the proposed VTSEA prototype and the precise output torque performance of VTSEA are verified by experiments.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7055-7061
Number of pages7
ISBN (Electronic)9798350384574
ISBN (Print)9798350384581
DOIs
Publication statusPublished - May 2024
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: 13 May 202417 May 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period13/05/2417/05/24

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Development of Variable Transmission Series Elastic Actuator for Hip Exoskeletons'. Together they form a unique fingerprint.

Cite this