Development of Connected and Automated Vehicle Platoons With Combined Spacing Policy

Research output: Journal article publicationJournal articleAcademic researchpeer-review

16 Citations (Scopus)

Abstract

Vehicle platoon has the potential to significantly improve traffic throughput and reduce fuel consumption and emissions and thus has attracted extensive attention recently. In this study, we propose a vehicle platoon of connected and automated vehicles (CAVs) with a combined spacing policy to enhance traffic performance. First, a combined spacing policy composed of the constant time gap (CTG) and constant spacing (CS) is formulated for the proposed vehicle platoon, where the leader adopts the CTG and the followers use the CS policy. Based on the h2 -norm string stability criteria, the notion of exogenous-head-to-tail string stability is newly introduced, and the sufficient conditions of the local stability and string stability in the frequency domain are derived using the Routh-Hurwitz criterion and Laplace transform respectively. Numerical experiments are conducted to validate the string stability. The effectiveness of the proposed vehicle platoons is verified by theoretical analysis and numerical experiments using two typical scenarios and several measurements of effectiveness (MOE) in various performance aspects, including efficiency, safety, energy, and emission. The results show that the proposed vehicle platoon performs better than the CS-based vehicle platoon in all aspects except for efficiency. It also indicates that the proposed vehicle platoon has obvious advantages over the CTG-based vehicle platoon in efficiency and safety aspects. The findings have demonstrated the merits of the combined application of CTG and CS policies for the vehicle platoon in enhancing stability and traffic performance.

Original languageEnglish
Pages (from-to)596-614
Number of pages19
JournalIEEE Transactions on Intelligent Transportation Systems
Volume24
Issue number1
DOIs
Publication statusPublished - Jan 2023

Keywords

  • Connected and automated car-following
  • constant spacing
  • constant time gap
  • stability analysis
  • traffic performance
  • vehicle platoon

ASJC Scopus subject areas

  • Automotive Engineering
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Development of Connected and Automated Vehicle Platoons With Combined Spacing Policy'. Together they form a unique fingerprint.

Cite this