Development of an improved urban emissivity model based on sky view factor for retrieving effective emissivity and surface temperature over urban areas

Jinxin Yang, Man Sing Wong, Massimo Menenti, Janet Elizabeth Nichol, James Voogt, E. Scott Krayenhoff, P. W. Chan

Research output: Journal article publicationJournal articleAcademic researchpeer-review

40 Citations (Scopus)

Abstract

(ISPRS) This study aims to evaluate the effects of urban geometry on retrieval of emissivity and surface temperature in urban areas. An improved urban emissivity model based on sky view factor (IUEM-SVF) was further enhanced to consider all radiance contributions leaving the urban canopy, including (i) emission by all facets within an instantaneous field of view (IFOV); (ii) reflection by all facets of emission from surrounding facets; and (iii) propagation of emitted and reflected radiation with multiple reflections (scattering) within a complex 3D array of urban objects. The effective emissivity derived from IUEM-SVF was evaluated with a microscale radiative transfer and energy balance model: Temperatures of Urban Facets in 3-D (TUF-3D). IUEM-SVF performs well when urban facets have uniform emissivity and temperature; e.g., root mean square deviations (RMSD) are less than 0.005 when material emissivity is larger than 0.80 (ɛ ⩾ 0.80). However, when material emissivities are variable within the observed target, differences of effective emissivity between IUEM-SVF and TUF-3D become larger, e.g., RMSD of 0.010. When the effect of geometry is not considered and a mixed pixel emissivity is defined, the difference is even much larger (i.e. 0.02) and this difference increases with the decrease of sky view factor. Thus, the geometry effect should be considered in the determination of effective emissivity. Effective emissivity derived from IUEM-SVF was used to retrieve urban surface temperature from a nighttime ASTER thermal infrared image. Promising results were achieved in comparison with standard LST products retrieved with the Temperature and Emissivity Separation (TES) algorithm. IUEM-SVF shows promise as a means to improve the accuracy of urban surface temperature retrieval. The effect of thermal heterogeneity on the effective emissivity was also evaluated by TUF-3D, and results show that the thermal heterogeneity cannot be neglected since the RMSD between the effective emissivity based on TUF-3D and IUEM-SVF is relatively large.
Original languageEnglish
Pages (from-to)30-40
Number of pages11
JournalISPRS Journal of Photogrammetry and Remote Sensing
Volume122
DOIs
Publication statusPublished - 1 Dec 2016

Keywords

  • Emissivity
  • Geometry
  • Temperature
  • Thermal image

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Engineering (miscellaneous)
  • Computer Science Applications
  • Computers in Earth Sciences

Fingerprint

Dive into the research topics of 'Development of an improved urban emissivity model based on sky view factor for retrieving effective emissivity and surface temperature over urban areas'. Together they form a unique fingerprint.

Cite this