Abstract
Direct methanol fuel cells (DMFC) have been widely researched for applications in portable electronics due to their use of liquid fuel for easy storage and transportation compared to gaseous hydrogen. However, DMFC's performance is strongly affected by methanol crossover that significantly degrades the fuel conversion efficiency at low output power, and is characterized by an increasing efficiency at increasing output power. The maximum efficiency point (MEP) is inherently difficult to track due to the commonly unknown methanol crossover rate, but since it is typically located very close to the maximum power point (MPP), an alternative tracking approach based on the MPP is proposed. In this paper, a fuel-cell-oriented MPP tracking (MPPT) algorithm based on resistance matching is developed, implemented, and tested in the context of a DMFC/supercapacitor hybrid power system. To account for the generally slow fuel cell dynamics, the DMFC is constantly tracked at the MPP while any surplus or deficit power is absorbed or delivered by the supercapacitor bank. The detailed formulation of the algorithm and the power flow design and realization are also discussed.
Original language | English |
---|---|
Title of host publication | 8th International Conference on Power Electronics - ECCE Asia |
Subtitle of host publication | "Green World with Power Electronics", ICPE 2011-ECCE Asia |
Pages | 1753-1760 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 31 Aug 2011 |
Event | 8th International Conference on Power Electronics - ECCE Asia: "Green World with Power Electronics", ICPE 2011-ECCE Asia - Jeju, Korea, Republic of Duration: 30 May 2011 → 3 Jun 2011 |
Conference
Conference | 8th International Conference on Power Electronics - ECCE Asia: "Green World with Power Electronics", ICPE 2011-ECCE Asia |
---|---|
Country/Territory | Korea, Republic of |
City | Jeju |
Period | 30/05/11 → 3/06/11 |
Keywords
- bi-directional converter
- direct methanol fuel cell
- Fuel cell
- maximum power point tracking
- power management
ASJC Scopus subject areas
- Electrical and Electronic Engineering