DETR-based Layered Clothing Segmentation and Fine-Grained Attribute Recognition

Hao Tian, Yu Cao, P. Y. Mok

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

7 Citations (Scopus)

Abstract

Clothing segmentation and fine-grained attribute recognition are challenging tasks at the crossing of computer vision and fashion, which segment the entire ensemble clothing instances as well as recognize detailed attributes of the clothing products from any input human images. Many new models have been developed for the tasks in recent years, nevertheless the segmentation accuracy is less than satisfactory in case of layered clothing or fashion products in different scales. In this paper, a new DEtection TRansformer (DETR) based method is proposed to segment and recognize fine-grained attributes of ensemble clothing instances with high accuracy. In this model, we propose a multi-layered attention module by aggregating features of different scales, determining the various scale components of a single instance, and merging them together. We train our model on the Fashionpedia dataset and demonstrate our method surpasses SOTA models in tasks of layered clothing segmentation and fine-grained attribute recognition.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
PublisherIEEE Computer Society
Pages3535-3539
Number of pages5
ISBN (Electronic)9798350302493
DOIs
Publication statusPublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2023-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'DETR-based Layered Clothing Segmentation and Fine-Grained Attribute Recognition'. Together they form a unique fingerprint.

Cite this